Experimental Study of Aerodynamic Damping of an Annular Compressor Cascade With Large Mean Incidences

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
M. C. Keerthi ◽  
Abhijit Kushari

This study addresses flutter that can occur in compressors when operating at high relative incidence. Studies are performed on a subsonic annular compressor cascade containing a sector of blades that can be subjected to controlled torsional oscillation. Measurements taken on the centrally located blade are used to study the unsteady surface pressures developed. Three large mean incidences are considered to characterize the aeroelastic performance. Aerodynamic damping is calculated for each test condition and its variation due to interblade phase angle (IBPA), reduced frequency, and incidence is studied. The source of stability or instability is traced to the nature of unsteady pressures. When the incidence is below the static-stall limit, an increasing incidence is found to exhibit aeroelastically more stable performance, whereas beyond the limit, the stability worsens. For the latter, the amount of improvement in stability by increasing reduced frequency is less compared to the former and its variation with IBPA is not as regular owing to the associated large uncertainty. The nonlinearity effects were found to be relatively higher for this case, especially from the aft region of the suction surface. It is also found that the phase of the local fluctuating pressure and its location on the chord has a decisive influence on the aerodynamic damping and its trends with respect to various parameters are discussed. The results are expected to be useful in the assessing aerodynamic damping trends in relation to the pressure phase variations in specific regions along the chord.

Author(s):  
F. O. Carta

Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade and over the chord of the center blade. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. In addition, results from two unsteady theories for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results that emerged from this investigation were: (a) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested, (b) as before, the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades, and (c) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.


Author(s):  
Olga V. Tchernycheva ◽  
Sébastien Regard ◽  
François Moyroud ◽  
Torsten H. Fransson

A parametric study on the flutter stability of a turbine cascade as a function of the torsion axis position, the bending direction and the reduced frequency is presented. In this process two different unsteady flow models are used in order to minimize the uncertainties of numerical modeling on the physical conclusions of the study. Comparisons are performed against available experimental data. It was found that the comparison of the global aerodynamic damping between numerical results and experimental data was reasonably good. It was observed that the stability was more sensitive to changes in the mode shape than in the reduced frequency. Comparisons of the local unsteady pressures showed similar tendencies for the numerical models and the experimental data, while discrepancies on the blade suction surface between the models were observed around the trailing edge for the subsonic flow and close to shock location for the transonic flow. The results indicated interesting agreement of the mode shape stability maps with results obtained on a largely different low-pressure turbine blade.


1988 ◽  
Author(s):  
Hiroshi Kobayashi

Effects attributable to shock wave movement on cascade flutter were examined for both turbine and compressor blade rows, using a controlled-oscillating annular cascade test facility and a method for accurately measuring time-variant pressures on blade surfaces. Nature of the effects and blade surface extent influenced by the shock movement were clarified in a wide range of Mach number, reduced frequency and interblade phase angle. Remarkable unsteady aerodynamic force was generated by the shock movement and it significantly affected the occurrence of compressor cascade flutter as well as turbine one. For turbine cascade the interblade phase angle remarkably controlled the effect of the force, while for compressor one the reduced frequency dominated it. The chordwise extent on blade surface influenced by the shock movement was suggested to be about 6% chord length.


1983 ◽  
Vol 105 (3) ◽  
pp. 565-574 ◽  
Author(s):  
F. O. Carta

Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade and over the chord of the center blade. The pressure data were reduced to Fourier coefficient form for direct comparison and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. In addition, results from two unsteady theories for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results that emerged from this investigation were: (a) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested, (b) as before, the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades, and (c) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.


1989 ◽  
Vol 111 (3) ◽  
pp. 222-230 ◽  
Author(s):  
H. Kobayashi

The effects of shock waves on the aerodynamic instability of annular cascade oscillation were examined for rows of both turbine and compressor blades, using a controlled-oscillating annular cascade test facility and a method for accurately measuring time-variant pressures on blade surfaces. The nature of the effects and blade surface extent affected by shock waves were clarified over a wide range of Mach number, reduced frequency, and interblade phase angle. Significant unsteady aerodynamic forces were found generated by shock wave movement, which markedly affected the occurrence of compressor cascade flutter as well as turbine cascade flutter. For the turbine cascade, the interblade phase angle significantly controlled the effect of force, while for the compressor cascade the reduced frequency controlled it. The chordwise extent of blade surface affected by shock movement was estimated to be approximately 6 percent chord length.


Author(s):  
Bo Wang ◽  
Yanhui Wu ◽  
Kai Liu

Driven by the need to control flow separations in highly loaded compressors, a numerical investigation is carried out to study the control effect of wavy blades in a linear compressor cascade. Two types of wavy blades are studied with wavy blade-A having a sinusoidal leading edge, while wavy blade-B having pitchwise sinusoidal variation in the stacking line. The influence of wavy blades on the cascade performance is evaluated at incidences from −1° to +9°. For the wavy blade-A with suitable waviness parameters, the cascade diffusion capacity is enhanced accompanied by the loss reduction under high incidence conditions where 2D separation is the dominant flow structure on the suction surface of the unmodified blade. For well-designed wavy blade-B, the improvement of cascade performance is achieved under low incidence conditions where 3D corner separation is the dominant flow structure on the suction surface of the baseline blade. The influence of waviness parameters on the control effect is also discussed by comparing the performance of cascades with different wavy blade configurations. Detailed analysis of the predicted flow field shows that both the wavy blade-A and wavy blade-B have capacity to control flow separation in the cascade but their control mechanism are different. For wavy blade-A, the wavy leading edge results in the formation of counter-rotating streamwise vortices downstream of trough. These streamwise vortices can not only enhance momentum exchange between the outer flow and blade boundary layer, but also act as the suction surface fence to hamper the upwash of low momentum fluid driven by cross flow. For wavy blade-B, the wavy surface on the blade leads to a reduction of the cross flow upwash by influencing the spanwise distribution of the suction surface static pressure and guiding the upwash flow.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 25-32 ◽  
Author(s):  
Janoš Berenji ◽  
Vladimir Sikora

SUMMARYThe objective of this paper was to estimate the genetic and ecological variation as well as the stability of tuber yield per plant, tuber number per plant and tuber size of Jerusalem artichoke based on the results of a variety trial carried out with 20 different Jerusalem artichoke varieties during the period of 1994-2000. Significant genetic as well as ecologycal variation was observed for all of the traits studied. The most promissing varieties showing high tuber yield combined with high yield stability were “BT-4”, “Violet Rennes” and “UKR 4/ 82”. It is encouraging that the highest yielding varieties exibited a rather stable performance over environments.


Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


Author(s):  
Syed Anjum Haider Rizvi ◽  
Joseph Mathew

At off-design conditions, when the blade Reynolds number is low, a significant part of the blade boundary layer can be transitional. Then, standard RANS models are unable to predict the flows correctly but explicit transition modeling provides some improvement. Since large eddy simulations (LES) are improvements on RANS, the performance of LES was examined by simulating a flow through a linear, compressor cascade for which experimental data are available — specifically at the Reynolds number of 210,000 based on blade chord when transition processes occur over a significant extent of the suction surface. The LES were performed with an explicit filtering approach, applying a low-pass filter to achieve sub-grid-scale modeling. Explicit 8th-order difference formulas were used to obtain high resolution spatial derivative terms. An O-grid was wrapped around the blade with suitable clustering for the boundary layer and regions of large changes along the blade. Turbulent in-flow was provided from a precursor simulation of homogeneous, isotropic turbulence. Two LES and a DNS were performed. The second LES refines the grid in the vicinity of the separation bubble on the suction surface, and along the span. Surface pressure distributions from all simulations agree closely with experiment, thus providing a much better prediction than even transition-sensitive RANS computations. Wall normal profiles of axial velocity and fluctuations also agree closely with experiment. Differences between LES and DNS are small, but the refined grid LES is closer to the DNS almost everywhere. This monotonic convergence, expected of the LES method used, demonstrates its reliability. The pressure surface undergoes transition almost immediately downstream of the leading edge. On the suction surface there are streaks as expected for freestream-turbulence-induced transition, but spots do not appear. Instead, a separating shear layer rolls up and breaks down to turbulence at re-attachment. Both LES capture this process. Skin friction distribution reveals the transition near the re-attachment to occur over an extended region, and subsequent relaxation is slower in the LES. The narrower transition zone in the DNS is indicative of the essential role of smaller scales during transition that should not be neglected in LES. Simulation data also reveal that an assumption of laminar kinetic energy transition models that Reynolds shear stress remains small in the pre-transitional region is supported. The remaining differences in the predictions of such models is thus likely to be the separation-induced transition which preempts the spot formation.


Author(s):  
Minghao Pan ◽  
Paul Petrie-Repar ◽  
Hans Mårtensson ◽  
Tianrui Sun ◽  
Tobias Gezork

In turbomachines, forced response of blades is blade vibrations due to external aerodynamic excitations and it can lead to blade failures which can have fatal or severe economic consequences. The estimation of the level of vibration due to forced response is dependent on the determination of aerodynamic damping. The most critical cases for forced response occur at high reduced frequencies. This paper investigates the determination of aerodynamic damping at high reduced frequencies. The aerodynamic damping was calculated by a linearized Navier-Stokes flow solver with exact 3D non-reflecting boundary conditions. The method was validated using Standard Configuration 8, a two-dimensional flat plate. Good agreement with the reference data at reduced frequency 2.0 was achieved and grid converged solutions with reduced frequency up to 16.0 were obtained. It was concluded that at least 20 cells per wavelength is required. A 3D profile was also investigated: an aeroelastic turbine rig (AETR) which is a subsonic turbine case. In the AETR case, the first bending mode with reduced frequency 2.0 was studied. The 3D acoustic modes were calculated at the far-fields and the propagating amplitude was plotted as a function of circumferential mode index and radial order. This plot identified six acoustic resonance points which included two points corresponding to the first radial modes. The aerodynamic damping as a function of nodal diameter was also calculated and plotted. There were six distinct peaks which occurred in the damping curve and these peaks correspond to the six resonance points. This demonstrates for the first time that acoustic resonances due to higher order radial acoustic modes can affect the aerodynamic damping at high reduced frequencies.


Sign in / Sign up

Export Citation Format

Share Document