Numerical Investigation on the Performance of a Regenerative Flow Turbine for Small-Scale Organic Rankine Cycle Systems

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Ramin Moradi ◽  
Luca Cioccolanti ◽  
Enrico Bocci ◽  
Mauro Villarini ◽  
Massimiliano Renzi

In this study, the performance characteristics of a regenerative flow turbine (RFT) prototype have been investigated by means of a computational fluid dynamics (CFD) study. The prototype has been initially designed to be used in gas pipelines replacing expansion valves but, because of the intrinsic characteristics of this kind of expander, its use can be extended to other applications like the expansion process in small-scale organic Rankine cycle (ORC) plants. In the first part of this work, the numerical results of the CFD analysis have been validated with the experimental data reported in literature for the same turbine prototype. After the validation of the model, a detailed study has been carried out in order to evaluate specific features of the turbine, focusing the attention on the typical operating conditions of small-scale low-temperature ORC systems. Results have shown that the considered RFT prototype operates with higher isentropic efficiencies (about 32% at 6000 rpm) at lower mass flow rates, while the power output is penalized compared to other operating points. The numerical analysis has also pointed out the high impact of the losses in the leakage flow in the gap between the blade tips and the stripper walls. Therefore, the CFD analysis carried out has provided a thoughtful understanding of the performance of the expander at varying operating conditions and useful insights for the future redesign of this kind of machine for the application in small-scale ORCs.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 829 ◽  
Author(s):  
Ruiqi Wang ◽  
Long Jiang ◽  
Zhiwei Ma ◽  
Abigail Gonzalez-Diaz ◽  
Yaodong Wang ◽  
...  

Small-scale organic Rankine cycle (ORC) systems driven by solar energy are compared in this paper, which aims to explore the potential of power generation for domestic utilisation. A solar thermal collector was used as the heat source for a hot water storage tank. Thermal performance was then evaluated in terms of both the conventional ORC and an ORC using thermal driven pump (TDP). It is established that the solar ORC using TDP has a superior performance to the conventional ORC under most working conditions. Results demonstrate that power output of the ORC using TDP ranges from 72 W to 82 W with the increase of evaporating temperature, which shows an improvement of up to 3.3% at a 100 °C evaporating temperature when compared with the power output of the conventional ORC. Energy and exergy efficiencies of the ORC using TDP increase from 11.3% to 12.6% and from 45.8% to 51.3% when the evaporating temperature increases from 75 °C to 100 °C. The efficiency of the ORC using TDP is improved by up to 3.27%. Additionally, the exergy destruction using TDP can be reduced in the evaporator and condenser. The highest exergy efficiency in the evaporator is 96.9%, an improvement of 62% in comparison with that of the conventional ORC, i.e., 59.9%. Thus, the small-scale solar ORC system using TDP is more promising for household application.


Author(s):  
Saeedeh Saghlatoun ◽  
Weilin Zhuge ◽  
Yangjun Zhang

After more than twenty years working on the selection of an appropriate expander for Organic Rankine cycles and wide research and attentions about its influence on the performance and total cost of waste heat recovery systems, now there is a good-enough background studies and achievement for large scale applications. But small-scale industries is like a art space to modify and revise the previous results. As it is clearly known, in small-scale applications and industries especially in internal combustion engines, besides the investigation of performance, physical properties and final efficiency of expander, other parameters should be analyzed accurately like manufacturing cost, availability, reliability, sensitivity to operating condition fluctuations. Due to a significant role of expander equipment to enhance the efficiency of ORC system in the first step expanders is investigated. In this paper, as per related operating characteristics, a complete comparison of small-scale expanders will be debated to guide designers to select more appropriate and the best efficient expansion machine as per their requirements. According to available literatures there is more need to do research about different types of expanders with various operating conditions in small-scale industries.


Author(s):  
T. Efstathiadis ◽  
M. Rivarolo ◽  
A. I. Kalfas ◽  
A. Traverso ◽  
P. Seferlis

An increasing trend in exploiting low enthalpy content energy sources, has led to a renewed interest in small-scale turbines for Organic Rankine Cycle applications. The design concept for such turbines can be quite different from either standard gas or steam turbine designs. The limited enthalpic content of many energy sources enforces the use of organic working media, with unusual properties for the turbine. A versatile cycle design and optimization requires the parameterization of the prime turbine design. In order to address the major challenges involved in this process, the present study discusses the preliminary design of an electricity-producing turbine, in the range of 100 kWel, for a low enthalpy organic Rankine cycle. There are many potential applications of this power generating turbine including geothermal and solar thermal fields or waste heat of PEM type fuel cells. An integrated model of equations has been developed, accordingly. The model aims to assess the performance of an organic cycle for various working fluids, including NH3, R600a and R-134a. The most appropriate working fluid has been chosen, taking into consideration its influence on both cycle efficiency and the specific volume ratio. The influence of this choice is of particular importance at turbine extreme operating conditions, which are strongly related to the turbine size. In order to assess the influence of various design parameters, a turbine design tool has been developed and applied to preliminarily define the blading geometry. Finally, a couple of competitive turbine designs have been developed. In one approach, the turbine speed is restricted to subsonic domain, while in the other approach the turbine speed is transonic, resulting to choked flow at the turbine throat. The two approaches have been evaluated in terms of turbine compactness and machine modularity. Results show that keeping the crucial parameters of the geometrical formation of the blade constant, turbine size could become significantly smaller decreasing up to 90% compared its original value.


Author(s):  
Melissa K. Ireland ◽  
Matthew S. Orosz ◽  
J. G. Brisson ◽  
Adriano Desideri ◽  
Sylvain Quoilin

Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander-generators with solar thermal collectors and storage can provide combined heat and power to underserved rural communities. Simulation of such systems is instrumental in optimizing their control strategy. However, most models developed so far operate at steady-state or focus either on ORC or on storage dynamics. In this work, a model for the dynamics of the solar ORC system is developed to evaluate the impact of variable heat sources and sinks, thermal storage, and the variable loads associated with distributed generation. This model is then used to assess control schemes that adjust operating conditions for daily environmental variation.


2016 ◽  
Vol 37 (4) ◽  
pp. 503-515 ◽  
Author(s):  
Krzysztof Sornek ◽  
Mariusz Filipowicz

Abstract Straw-fired batch boilers, due to their relatively simple structure and low operating costs, are an excellent source of heat for a wide range of applications. A concept prototype of a cogeneration system with a straw-fired batch boiler was developed. The basic assumptions were based on the principles of the Rankine Cycle and the Organic Rankine Cycle systems with certain design modifications. Using the prototype design of a system that collects high-temperature heat from the boiler, studies were performed. The studies involved an analysis of the flue gas temperature distribution in the area of the oil exchanger, a comparison of the instantaneous power of the boiler’s water and oil circuits for different modes of operation, as well as an analysis of the flue gas. In the proposed system configuration where the electricity production supplements heat generation, the power in the oil circuit may be maintained at a constant level of approx. 20-30 kW. This is possible provided that an automatic fuel supply system is applied. Assuming that the efficiency of the electricity generation system is not less than 10%, it will be possible to generate 2-3 kW of electricity. This value will be sufficient, for an on-site operation of the boiler.


Author(s):  
Matthias Lampe ◽  
Carlo De Servi ◽  
Johannes Schilling ◽  
André Bardow ◽  
Piero Colonna

Abstract The conventional design of organic Rankine cycle (ORC) power systems starts with the selection of the working fluid and the subsequent optimization of the corresponding thermodynamic cycle. More recently, systematic methods have been proposed integrating the selection of the working fluid into the optimization of the thermodynamic cycle. However, in both cases, the turbine is designed subsequently. This procedure can lead to a suboptimal design, especially in the case of mini- and small-scale ORC systems, since the preselected combination of working fluid and operating conditions may lead to infeasible turbine designs. The resulting iterative design procedure may end in conservative solutions after multiple trial-and-error attempts due to the strong interdependence of the many design variables and constraints involved. In this work, we therefore present a new design and optimization method integrating working fluid selection, thermodynamic cycle design, and preliminary turbine design. To this purpose, our recent 1-stage continuous-molecular targeting (CoMT)-computer-aided molecular design (CAMD) method for the integrated design of the ORC process and working fluid is expanded by a turbine meanline design procedure. Thereby, the search space of the optimization is bounded to regions where the design of the turbine is feasible. The resulting method has been tested for the design of a small-scale high-temperature ORC unit adopting a radial-inflow turbo-expander. The results confirm the potential of the proposed method over the conventional iterative design practice for the design of small-scale ORC turbogenerators.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2975 ◽  
Author(s):  
Kolasiński

This paper reviews the applications of the multi-vane expanders in ORC (organic Rankine cycle) systems. The operating principle and design of the ORC systems are addressed in the introduction. Then, there is a brief review of the expanders applied in small-power and micro-power ORCs, and a discussion of the multi-vane expander design and operating principle as an introduction to a comprehensive review on the applications of the multi-vane expanders in ORC systems. The different features of the multi-vane expanders—i.e., the design of the expander, its geometrical dimensions and operating conditions, durability, applied working fluid, obtained power output, and efficiency—are analyzed in this paper. This review clearly indicates that multi-vane expanders are a promising alternative to the different types of the expanders applied in ORC systems.


2020 ◽  
Vol 197 ◽  
pp. 11001
Author(s):  
Antonio Cantiani ◽  
Annarita Viggiano ◽  
Emanuele Fanelli ◽  
Vinicio Magi

Scroll compressors are often used in air conditioning and refrigeration systems thanks to their high efficiency, low noise and vibrations, light weight and high reliability. Scrolls are also widely used as positive displacement expanders in small-scale power generation systems, such as Organic Rankine Cycles (ORCs). In recent years, the research has focused on the development of mathematical models that help to predict the scroll expander performances under different operating conditions. In this work, a quasi-dimensional model of a scroll expander of an Organic Rankine Cycle unit is presented. Such an expander consists of two identical circle involute spirals, with appropriate starting segments. Specifically, the model is able to design the scroll expander geometry with either a “circular cutter” or a “perfect mesh profile” (PMP) approach, which are two of the most common scroll geometry starting segments. As regards the thermo-fluid dynamic aspects, specific sub-models have been used to account for radial and axial leakage, wall heat transfer, intake and exhaust of the working fluid. The model has been validated with available experimental data in order to assess its accuracy and, at the same time, to calibrate the implemented sub-models. The influence of some geometrical parameters on the expander performances has been assessed. In particular, a study of the influence of the wrap geometry is presented. The results show that the circular cutter approach returns better performances at the expenses of a higher mass consumption. Nevertheless, the circular cutter modification returns a higher specific work. Lastly, the influence of one of the PMP parameters on performances has been assessed. The results show a fairly strong dependence of both mechanical power and specific work, suggesting that the global optimization of all geometric parameters of the scroll expander may radically improve its performances.


Sign in / Sign up

Export Citation Format

Share Document