Experimental and Numerical Investigations on Jet Impingement Cooling for Electronic Modules

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Wen-Xiao Chu ◽  
Kuan-Chang Huang ◽  
Mohammed Amer ◽  
Chi-Chuan Wang

AbstractIn this paper, the influence of outlet arrangement and plenum structure on impingement cooling is experimentally and numerically investigated in a typical 1-U confined server space. Three outlets include Z-type, bilateral, and U-type arrangements, and the plenum configurations contain partially inclined, fully inclined, and staged layouts. As a result, using the U-type outlet or staged plenum may prominently compromise the impingement cooling performance on the target plates with lower pumping power. With numerical investigation, it is found that, for the case with Z-type outlet, the flowrate of jet impingement increases alongside the streamwise direction. Besides, the impingement stagnation region on target plates with the minimum thermal resistance may shift toward the outlet. Meanwhile, the uniformity of jet impingement can be improved by 10.7% and 50.3% when the bilateral and U-type outlets are applied, respectively, and the jet impingement is changed to perpendicular direction due to the opposite cross flow from the coming flow direction. On the other hand, by applying the inclined plenum and staged plenum, the uniformity of jet impingement can be dramatically improved by 113.9% and 215.1%, respectively. However, the local jet impingement velocity distribution is still nonuniform. Hence, a novel design of impingement plate based on the concept of Coanda effect is proposed. The peak value of the thermal resistance on target plate can be reduced by 21.8% and 16.0% at the center region and the fore part of the jet array.

Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


Author(s):  
J. Javier Otero-Pérez ◽  
Richard D. Sandberg ◽  
Satoshi Mizukami ◽  
Koichi Tanimoto

Abstract This article shows the first parametric study on turbulent multi-jet impingement cooling flows using large-eddy simulations (LES). We focus on assessing the influence of the inter-jet distance and the cross-flow conditions on the heat transfer at the impingement wall. The LES setup is thoroughly validated with both experimental and direct numerical simulation data, showing an excellent agreement. The inter-jet distance effect on the heat transfer is studied comparing three different distances, where the full Nusselt number profile decreases in amplitude when the jet distance is increased. To evaluate the cross-flow effects, we prescribe both laminar and turbulent inflow conditions at different cross-flow magnitudes ranging between 20% and 40% of the impinging jet speed. Large cross-flow intensities cause a jet deflection which reduces the maxima in the Nusselt number distribution, and it increases the heat transfer in the areas of the wall less affected by the jet impingement. Adding realistic turbulent fluctuations to the inflow enhances the cross-flow effects on the heat transfer at the impingement wall.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ahmet Ümit Tepe ◽  
Kamil Arslan ◽  
Yaşar Yetişken ◽  
Ünal Uysal

In this study, effects of extended jet holes to heat transfer and flow characteristics of jet impingement cooling were numerically investigated. Cross-flow in the impinging jet cooling adversely affects the heat transfer on the target surface. The main purpose of this study is to reduce the negative effect of cross-flow on heat transfer by extending jet holes toward the target surface with nozzles. This study has been conducted under turbulent flow condition (15,000 ≤ Re  ≤  45,000). The surface of the turbine blade, which is the target surface, has been modeled as a flat plate. The effect of the ribs, placed on the target surface, on the heat transfer has been also investigated, and the results were compared with the flat surface. The parameters such as average and local Nusselt numbers on the target surface, flow characteristics, and compressor power have been examined in detail. It was obtained from the numerical results that the average Nusselt number increases with decreasing the gap between the target surface and the nozzle. In addition, the higher average Nusselt number was obtained on the flat surface than the ribbed surface. The lowest compressor power was achieved in the 5Dj nozzle gap for the flat surface and in the 4Dj nozzle gap for the ribbed surface.


Author(s):  
Chenglong Wang ◽  
Lei Luo ◽  
Lei Wang ◽  
Bengt Sundén

Jet impingement cooling is widely used in modern gas turbines. In the present study, both heat transfer and flow field measurements of jet impingement in cross-flow are carried out with and without a vortex generator pair (VGP). The jet and cross-flow Reynolds numbers are fixed at 15,000 and 48,000, respectively. The local heat transfer coefficients are obtained by a liquid crystal thermography (LCT) technique. Results show that the jet impingement heat transfer on the target wall is remarkably enhanced by the VGP as compared to the baseline case. The stagnation region moves upstream with improved heat transfer when the VGP is present. The flow field is measured by particle image velocimetry (PIV). The cross-flow is shown to deflect the impinging jet but the VGP reduces the streamwise momentum of the cross-flow and drives the crossflow away from the issuing jet. This leads to stronger jet impingement and thus heat transfer enhancement on the target wall.


2021 ◽  
Vol 323 ◽  
pp. 00010
Author(s):  
Marcin Froissart ◽  
Paweł Ziółkowski ◽  
Janusz Badur

The rising demand for efficient cooling technologies is a strong driver of extensive research in this area. This trend is particularly strong in turbines and microprocessors technology. Presented study is focused on the jet impingement cooling concept, which is used in various configurations for many years. The potential of the heat sink shape modification is not yet fully explored. Available literature suggests that average Nusselt number can be improved by more than 10% by adding conical shape in the stagnation region. This refers to the axisymmetric case where cold-water jet impinges the surface of heated aluminium. Presented results are based on 2D axisymmetric thermal-FSI (Fluid-Solid Interaction) model, which was validated against the experiment. The objective of the presented analysis is to determine the correlation between cooling effectiveness (Nusselt number) and chosen examples of concave and convex shapes located in the jet stagnation area.


2021 ◽  
pp. 1-21
Author(s):  
Jose Javier Otero Perez ◽  
Richard Sandberg ◽  
Satoshi Mizukami ◽  
Koichi Tanimoto

Abstract This article shows the first parametric study on turbulent multi-jet impingement cooling flows using large-eddy simulations (LES). We focus on assessing the influence of the inter-jet distance and the cross-flow conditions on the heat transfer at the impingement wall. The LES setup is thoroughly validated with both experimental and direct numerical simulation data, showing an excellent agreement. The inter-jet distance effect on the heat transfer is studied comparing three different distances, where the full Nusselt number profile decreases in amplitude when the jet distance is increased. To evaluate the cross-flow effects, we prescribe both laminar and turbulent inflow conditions at different cross-flow magnitudes ranging between 20% and 40% of the impinging jet speed. Large cross-flow intensities cause a jet deflection which reduces the maxima in the Nusselt number distribution, and it increases the heat transfer in the areas of the wall less affected by the jet impingement. Adding realistic turbulent fluctuations to the inflow enhances the cross-flow effects on the heat transfer at the impingement wall.


1986 ◽  
Vol 108 (2) ◽  
pp. 193-199 ◽  
Author(s):  
S. J. Price ◽  
M. P. Paidoussis

A quasi-static fluidelastic analysis is developed for a single flexible cylinder surrounded by rigid cylinders and subject to cross-flow. Although the analysis is quasi-static, it includes a frequency-dependent term which arises because of flow retardation around the front stagnation region of the cylinder. The combined effect of this flow retardation and of the fluid force field is to produce, for some intercylinder patterns of motion, a negative fluid damping, acting in the sense normal to the flow direction. Using this analysis, the effect of array pattern of the adjacent rigid cylinders is investigated, and it is shown that for some geometries a single flexible cylinder will become unstable while for others it will not. For those array patterns which the theory indicates to be potentially unstable, the variation of critical flow velocity with mass-damping parameter is obtained and compared with available experimental data. In general, the comparison is good, indicating the validity of this analysis.


Author(s):  
Yoon Jin Won ◽  
Jae ho Lee ◽  
Evelyn N. Wang ◽  
Kenneth E. Goodson ◽  
Thomas W. Kenny

This paper discusses a novel design for cooling microprocessors using micro fabricated water impinging jet on a hot surface in contact with an electronic device. The goal is to achieve enhanced heat transfer from the exposed surface, especially at localized “hot spot” regions, with minimum pressure drop to achieve the flow rate necessary. The proposed methodology is used to analyse cooling performance in our test structures, get temperature data, and extract heat transfer coefficient from the model. Based on this analysis with various design, optimisation of these design parameters will be studied to improve designs of liquid jet impingement for electronic cooling.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Johan Revstedt

Jet impingement cooling is commonly used in gas turbines. Usually the spent air from the upstream jets forms a cross-flow past the downstream jets, which degrades their heat transfer performance. In the present study, a new method was proposed to promote the jet penetration and enhance the impingement heat transfer. By placing a delta-winglet vortex generator pair (VGP) in the cross-flow upstream of the jet nozzle, it is found that the impingement heat transfer on the target wall is significantly enhanced. The stagnation region shifts upstream and expands compared to the original case. The stagnation and area-averaged Nusselt numbers also increased. The effects of the distance between the VGP and the jet nozzle l1 were also investigated. The optimal spacing l1 is suggested to be 4d, giving the best heat transfer performance. This study sheds new light on the enhancement of jet impingement heat transfer in a cross-flow.


Sign in / Sign up

Export Citation Format

Share Document