Study on the Expansion Force of TWIP Steel Expandable Tubular in Solid Expandable Tubular Technology

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Shengkun Wang ◽  
Shengjun Huang ◽  
Minglei Wang ◽  
Gang Chen

Abstract This paper focuses on the expansion process of twinning-induced plasticity (TWIP) steel tubular undergoing the large circumferential plastic deformation in expandable tubular technology. The expansion process was performed by propagating a mandrel through the tubular mechanically. This paper aimed at developing the mathematical models to predict the expansion force required for the radial expansion of the TWIP steel tubular using the rigid-perfectly plastic model and the linear hardening rigid plastic model, respectively. The volume incompressible condition together with the Tresca yield criterion was used to describe the plastic behavior of the tubular material in the expansion process. Besides, the finite element analysis of the expansion process was developed using the commercial software abaqus to validate the theoretical results and determine the scope of application of the derived expansion force formula. Further to this, the effect of the process parameters, such as the expansion ratio, friction coefficient and the cone angle, on the expansion force was investigated. It was found that the expansion force difference of two models have similar variation trend. The accuracy and applicability of the expansion force formula using the linear hardening rigid plastic model improve as the expansion ratio increases and the expansion cone angle decreases.

2018 ◽  
Vol 24 (8) ◽  
pp. 106
Author(s):  
Ahmed Ibrahim Razooqi

The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of conical shape and an increase in expansion ratio results in an increase of expansion force and a decrease in the pipe thickness and length resulting in pipe thinning and shortening. Good agreement is evident between experimental and ANSYS results within discrepancy (16.90017%) in the X direction and (27.68698%) in the Y direction. Also, the stress distribution is investigated and it can be concluded that the case of Diameter (Do cone) = 35mm and (A) = α = 15° is the optimum.  


2019 ◽  
Vol 20 (1) ◽  
pp. 105 ◽  
Author(s):  
Jean-Jacques Marigo ◽  
Kyrylo Kazymyrenko

We propose an elasto-plastic model coupled with damage for the behavior of geomaterials in compression. The model is based on the properties, shown in [S. Andrieux, et al., Un modèle de matériau microfissuré pour les bétons et les roches, J. Mécanique Théorique Appliquée 5 (1986) 471?513], of microcracked materials when the microcracks are closed with a friction between their lips. That leads to a macroscopic model coupling damage and plasticity where the plasticity yield criterion is of the Drucker–Prager type with kinematical hardening. Adopting an associative flow rule for the plasticity and a standard energetic criterion for damage, the properties of such a model are illustrated in a triaxial test with a fixed confining pressure.


2018 ◽  
Vol 174 ◽  
pp. 03001
Author(s):  
Oleksandr Shimanovsky

The paper describes general calculation theory and elasticplastic behavior of cables - bearing elements of suspension structural systems. It is mentioned that this theory is based almost on the same assumptions as the theory of cable calculation at behavior of material in elastic range, excluding additional supposition in the part of idealization of real dependence between stresses and deformations on account of difficulties with using the latter in actual structures design. For that reason, this dependence is replaced with a model in the form of analytic curve or, as it is accepted to say in this case, a diagram, which is built according to some simple mathematic rule, reflecting element behavior conditions and characteristics of its material. It is stated that four main models of material behavior are used in practice: elastic-plastic, elastic-plastic with linear hardening, rigid-plastic and rigid-plastic with linear hardening. Conditions of occurrence of plastic deformations in all behavior stages of cable cross section are determined. Interrelations for geometrically and physically nonlinear task of the cable at active loading are provided. Methods are given and limit values of loads acting on the cable are determined. Equations defining parameters of cable deflected mode in all deformation phases and conditions of changing phases of cable behavior are given.


1999 ◽  
Author(s):  
Hirokazu Tsuji ◽  
Kazuo Maruyama

Abstract Yield clamping force of a bolt in plastic region tightening depends on yield point load of the bolt under combined loads of axial tension and thread torque induced by the tightening process. A new estimation method using interaction curve for yield is proposed, which is applied to the yield clamping force and maximum additional tension under external force. This estimation method utilizes the general yield criterion based on the rigid-plastic solution for combined loads of tension and torsion. The yield of the bolt is expressed by the point of the intersection between the interaction curve and loading path of the bolt in tightening or external loading. Considering the coefficient of friction at the flank of the thread and the residual thread torque after tightening, yield clamping force and maximum additional tension are obtained respectively by the simple formulas. The yield clamping force and the maximum additional tension of the bolt are examined experimentally by a combined load testing machine which can apply combined tensile and torsional loads on the threaded portion of the bolt. Estimated values by the proposed method shows good agreement with the experimental results. The proposed estimation method is superior to the conventional one which takes into account only the local yield criterion. Finally, the target zones of initial clamping force controlled by elastic region tightening, yield point tightening and plastic region tightening are examined. Usefulness of the yield clamping force is demonstrated based on the rigid-plastic model.


2013 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Md Velden ◽  
FKS Al-Jahwari

 The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion. 


2015 ◽  
Vol 51 (4) ◽  
pp. 679-688 ◽  
Author(s):  
A. I. Chanyshev ◽  
G. M. Podyminogin
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Yeong-Maw Hwang

The present paper concerns the general solution for finite plane strain pure bending of incompressible, orthotropic sheets. In contrast to available solutions, the new solution is valid for inhomogeneous distributions of plastic properties. The solution is semi-analytic. A numerical treatment is only necessary for solving transcendent equations and evaluating ordinary integrals. The solution’s starting point is a transformation between Eulerian and Lagrangian coordinates that is valid for a wide class of constitutive equations. The symmetric distribution relative to the center line of the sheet is separately treated where it is advantageous. It is shown that this type of symmetry simplifies the solution. Hill’s quadratic yield criterion is adopted. Both elastic/plastic and rigid/plastic solutions are derived. Elastic unloading is also considered, and it is shown that reverse plastic yielding occurs at a relatively large inside radius. An illustrative example uses real experimental data. The distribution of plastic properties is symmetric in this example. It is shown that the difference between the elastic/plastic and rigid/plastic solutions is negligible, except at the very beginning of the process. However, the rigid/plastic solution is much simpler and, therefore, can be recommended for practical use at large strains, including calculating the residual stresses.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


1979 ◽  
Vol 46 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The theoretical procedure presented herein examines the influence of retaining the transverse shear force in the yield criterion and rotatory inertia on the dynamic plastic response of beams. Exact theoretical rigid perfectly plastic solutions are presented for a long beam impacted by a mass and a simply supported beam loaded impulsively. It transpires that rotatory inertia might play a small, but not negligible, role on the response of these beams. The results in the various figures indicate that the greatest departure from an analysis which neglects rotatory inertia but retains the influence of the bending moment and transverse shear force in the yield condition is approximately 11 percent for the particular range of parameters considered.


Sign in / Sign up

Export Citation Format

Share Document