Laminar Forced Convection of Nanofluids in a Circular Tube: A New Nonhomogeneous Flow Model

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Saptarshi Mandal ◽  
P. S. Ghoshdastidar

Abstract In this paper, the local and average heat transfer coefficient enhancement or deterioration, and rise in pumping power in steady, laminar alumina–water, titania–water, and carbon nanotube (CNT)–water nanofluids flow in a horizontal circular tube subjected to constant heat flux at the outer wall have been investigated numerically based on a new variable property nonhomogeneous flow model which takes into account agglomeration of nanoparticles. The results have been compared with the published experimental results of Utomo et al. (Utomo, A. T. et al., 2014, “The Effect of Nanoparticles on Laminar Heat Transfer in a Horizontal Tube,” Int. J. Heat Mass Transfer, 69, pp. 77–91.) using various property models of thermal conductivity and viscosity, and for equal Reynolds number, equal inlet velocity, equal mass flowrate, and equal pumping power of nanofluid and base fluid. Stream function–vorticity–temperature formulation and finite difference method have been used. Using the same Reynolds number of nanofluid and base fluid gives much higher enhancement in average heat transfer coefficient as compared to other modes of comparison. Interestingly, the criterion of equal pumping power gives negative percent enhancement in the case of CNT–water nanofluid. The pumping power is found to rise for all three nanofluids. It is found that consideration of agglomeration of nanoparticles has produced improved accuracy in the numerical solution.

1994 ◽  
Vol 116 (1) ◽  
pp. 49-54 ◽  
Author(s):  
R. A. Wirtz ◽  
Ashok Mathur

Measurements of the distribution of convective heat transfer over the five exposed faces of a low profile electronic package are described. The package, of square planform and length-to-height ratio, L/a = 6, is part of a regular array of such elements attached to one wall of a low aspect ratio channel. The coolant is air, and experiments are described for the Reynolds number range, 3000<Re<7000. The average heat transfer coefficient for the top face is found to be nearly equal to the overall average heat transfer coefficient for the element. The average heat transfer coefficient for the upstream face and two side faces are higher than the overall average by approximately 30–40 percent and 20–30 percent, respectively while that for the downstream face is 20–30 percent less than the overall average. Furthermore, the distribution in local heat transfer coefficient over the five surfaces of the element is approximately independent of variations in Reynolds number.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Orkodip Mookherjee ◽  
Shantanu Pramanik ◽  
Uttam Kumar Kar

Abstract The thermal and fluid dynamic behavior of a confined two-dimensional steady laminar nanofluid jet impinging on a horizontal plate embedded with five discrete heating elements subjected to a constant surface heat flux has been studied for a range of Reynolds number (Re) from 100 to 400 with Prandtl number, Pr = 6.96, of the base fluid. Variation of inlet Reynolds number produces a significant change of the flow and heat transfer characteristics in the domain. Increasing the nanoparticle concentration (ϕ) from 0% to 4% exhibits discernible change in equivalent Re and Pr caused by the modification of dynamic viscosity, effective density, thermal conductivity, and specific heat of the base fluid. Considerable improvement in heat transfer from the heaters is observed as the maximum temperature of the impingement wall is diminished from 0.95 to 0.55 by increasing Re from 100 to 400; however, the result of increasing ϕ on cooling of the heaters is less appreciable. Self-similar behavior has been depicted by cross-stream variation of temperature and streamwise heat flux in the developed region along the impingement wall up to Re = 300 for ϕ=0% to 4%. But the spread of the respective quantities shows strong dependence on ϕ at Re = 300 with sudden attenuation in magnitude in the developed region of flow. Substantial influence of Re is evident on Eckert number and pumping power. Eckert number decreases, whereas pumping power increases with an increase in Re, and the respective variations exhibit correspondence with power fit correlations.


2021 ◽  
pp. 80-80
Author(s):  
Hussein Togun ◽  
Raadz Homod ◽  
T Tuqaabdulrazzaq

Turbulent heat transfer and hybrid Al2O3-Cu/nanofluid over vertical double forward facing-stepis numerically conducted. K-? standard model based on finite volume method in two dimensional are applied to investigate the influences of Reynolds number, step height, volume fractions hybrid Al2O3-Cu/nanofluid on thermal performance. In this paper, different step heights for three cases of vertical double FFS are adopted by five different of volume fractions of hybrid (Al2O3-Cu/water) nanofluid varied for 0.1, 0.33, 0.75, 1, and 2, while the Reynolds number different between 10000 to 40000 with temperature is constant. The main findings revealed that rise in local heat transfer coefficients with raised Reynolds number and maximum heat transfer coefficient was noticed at Re=40000. Also rises in heat transfer coefficient detected with increased volume concentrations of hybrid (Al2O3-Cu/water) nanofluid and the maximum heat transfer coefficient found at hybrid Al2O3-Cu/water nanofluid of 2% in compared with others. It?s also found that rise in surface heat transfer coefficient at 1ststep-case 2 was greater than at 1ststep-case 1 and 3 while was higher at 2ndstep-case 3. Average heat transfer coefficient with Reynolds number for all cases are presented in this paper and found that the maximum average heat transfer coefficient was at case 2 compared with case 1 and 3. Gradually increases in skin friction coefficient remarked at 1stand 2ndsteps of the channel and drop in skin friction coefficient was obtained with increased of Reynolds number. Counter of velocity was presented to show the recirculation regions at first and second steps as clarified the enrichment in heat transfer rate. Furthermore, the counter of turbulence kinetic energy contour was displayed to provide demonstration for achieving thermal performance at second step for all cases.


2013 ◽  
Vol 732-733 ◽  
pp. 593-599
Author(s):  
Xiao Yan Zhang ◽  
Fang Fang Jiang ◽  
Shan Yuan Zhao ◽  
Wen Fei Tian ◽  
Xiao Hang Chen

The heat transfer and pressure drop characteristics for water flowing in four spiral coils with different shapes and different sizes were experimental studied. Reynolds number range from 4000 to 9000, volume flow rate range from 200 to 350 L/h and heating power range from 80-350 W. Based on the experimental results, the regularity of Reynolds number and heating power influencing on heat transfer and pressure drop characteristics was analyzed and discussed. The results indicate: the Nu increases with increasing Re, the greatest average heat transfer coefficient appears in the smaller circular spiral coil. The heat transfer coefficients increase with increasing heating power, the greatest average heat transfer coefficient also appears in the smaller circular spiral coil. The pressure drops increase with increasing Re, the pressure drop in big ellipse spiral coil is greatest. The resistance coefficients gradually decrease with increasing Re. The resistance coefficient of small circular spiral coil is always greatest, and the resistance coefficient of big circular spiral coil is smallest.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Xiaoming Zhou ◽  
Xunfeng Li ◽  
Keyong Cheng ◽  
Xiulan Huai

Investigation of nano liquid-metal fluid (consists of liquid metal Ga and nanoparticles copper) as heat transfer medium in circular tube is performed for the first time. The numerical simulations of heat transfer enhancement of nano liquid-metal fluid in a circular tube subject to a constant wall heat flux are carried out, and the heat transfer performance is evaluated. The two-phase mixture model is used to simulate the flow of nanoparticles–liquid mixture for Reynolds number (Re) from 250 to 1000 and nanoparticle volume fraction (αp) from 0 to 0.1. The results show that the average heat transfer coefficient of nano liquid-metal fluid Ga–Cu is 23.8 times of that of nanofluid water–Cu at Re = 500 and αp = 0.04, and the average wall shear stress of Ga–Cu is 0.0154 Pa, whereas for water–Cu, it is 0.0259 Pa. As Re increases from 250 to 1000, the average heat transfer coefficient of water–Cu is improved by 40%, whereas for Ga–Cu, it is 45.4%. Based on the results in the paper, the nano liquid-metal fluid can be considered as an excellent heat transfer medium of forced convection in circular tube.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2400
Author(s):  
Waqar Ahmed ◽  
Zaira Zaman Chowdhury ◽  
Salim Newaz Kazi ◽  
Mohd. Rafie Bin Johan ◽  
Irfan Anjum Badruddin ◽  
...  

In this research, Zinc Oxide-Ethylene @ glycol distilled water based nanofluid was synthesized using the sonochemical method. The convective heat transfer properties of as synthesized nanofluid were observed for a closed single circular tube pipe in turbulent flow regimes. The prepared nanofluids were characterized by ultra violet spectroscopy (UV–VIS), UV–VIS absorbance, X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and stability analysis. Five calibrated k-type thermocouples were mounted on the surface of the test section. Analytical data related to heat transfer properties of the synthesized nanofluid for the heat exchanger, incorporated with the closed circular tube test section were collected. The addition of ZnO solid nanoparticles in the EG@DW mixture enhanced the value of thermal conductivity and other thermophysical characteristics of the nanofluids. Maximum thermal conductivity was observed at 45 °C for using 0.1 wt.% of ZnO nanoparticles EG@DW nanofluid. Increasing the wt.% of ZnO solid nanoparticles in the EG@DW mixture had increased the thermal conductivity subsequently with change in temperature from 20 to 45 °C. Furthermore, Nusselt numbers of ZnO-EG@DW-based nanofluid was estimated for the various concentration of ZnO present in EG@DW-based fluid. The presence of ZnO solid nanoparticles into the EG@DW base fluid escalate the Nusselt (Nu) number by 49.5%, 40.79%, 37% and 23.06% for 0.1, 0.075, 0.05 and 0.025 wt.% concentrations, respectively, at room temperature. Varying wt.% of ZnO (0.1, 0.075, 0.05 and 0.025) nanoparticles had shown improved heat transfer (h) properties compared to the base fluid alone. The absolute average heat transfer of ZnO-EG@DW nanofluid using the highest concentration of 0.1 wt.% was improved compared to the EG@DW mixture. The magnitude of absolute average heat transfer was increased from 600 W/m2k for the EG@DW mixture to 1200 W/m2k for ZnO-EG@DW nanofluid. Similarly, the heat transfer improvement for the other three wt.% (0.075, 0.05 and 0.025) was noticed as 600–1160, 600–950 and 600–900 W/m2k, respectively, which is greater than base fluid.


2020 ◽  
Vol 14 ◽  

Computation fluid dynamics (CFD) modelling of laminar heat transfer behaviour of three types of nanofluids over flat plate are studied. In the modelling the two dimensional under laminar model is used. The base fluid is pure water and the volume fraction of nanoparticles in the base fluid is 0, 1, 2, 3, and 4%. The applied Reynolds number range considered is 997.1 ≤ Re ≤ 9971. For modelling of the physical properties of the nanofluid, single phase approach is used. The effect of the volume fraction and the type of nanoparticles on the physical properties has been evaluated and presented. Then, the analysis the flow behaviour of these three nanofluids is conducted by presenting the effect of increasing the nanoparticles concentration on the velocity profile, wall shear stress, skin friction coefficient, and average heat transfer coefficient. The results show that the type of nanoparticles is an important parameter for the heat transfer enhancement as each type has shown dissimilar behaviour in this study. Moreover, a polynomial correlation has been obtained to present the relation of the wall shear stress, skin friction coefficient and average heat transfer coefficient as a function of the volume fraction for the three nanofluids.


2005 ◽  
Author(s):  
Muhammad M. Rahman ◽  
Shantanu S. Shevade

The study considered the analysis of heat transfer in a composite channel of trapezoidal cross-section fabricated by etching a silicon &lt;100&gt; wafer and bonding that with a slab of gadolinium. Gadolinium is a magnetic material that exhibits high temperature rise during adiabatic magnetization around its transition temperature of 295K. Heat was generated in the substrate by the application of magnetic field. The conjugate heat transfer scenario where part of generated heat is directly dissipated to the working fluid from gadolinium whereas part is conducted through the silicon structure and reaches the working fluid was studied. Water, ammonia, and FC-77 were studied as the possible working fluids. This kind of heat exchanger is being developed for a micro-scale refrigeration system that works with magnetic heating and cooling principle. Equations governing the conservation of mass, momentum, and energy were solved in the fluid region. In the solid region, heat conduction equation was solved. The volumetric heat generation rate due to magnetic heating was included in the gadolinium portion of the composite channel. A grid independence study was carried out to choose the optimum number of elements to mesh the channel geometry and surrounding structure. A thorough investigation for velocity and temperature distribution was performed by varying channel aspect ratio, Reynolds number, and the magnetic field. The thickness of gadolinium slab, spacing between channels in the heat exchanger, and fluid flow rate were varied. To check the validity of simulation, the results were compared with existing results for single material channels. It was found that the peripheral average heat transfer coefficient and Nusselt number is larger near the entrance and decreases downstream because of the development of the thermal boundary layer. With the increase in Reynolds number, the outlet temperature decreased and the average heat transfer coefficient increased.


Author(s):  
Rabijit Dutta ◽  
Anupam Dewan ◽  
Balaji Srinivasan

We present a numerical investigation of hydrodynamic and heat transfer behaviors for Al2O3–water nanofluids for laminar and turbulent confined slot jets impingement heat transfer at nanoparticle volume fractions of 3% and 6%. A comparison of the nanofluid with the base fluid has been performed for the same Reynolds number and same jet inlet velocity. A single-phase fluid approach was used to model the nanofluid. Further, the thermo-physical properties of nanofluid were calculated using a recent approach. For the same value of Reynolds number, maximum increase in the average heat transfer coefficient at the impingement plate was found to be approximately 27% and 22% for laminar and turbulent slot impingements, respectively, for 6% volume fraction of nanofluid as compared to that of water. However, the pumping power curve showed a steep increase with the volume fraction with nearly five times increase in the pumping power observed for 6% volume fraction nanofluid. Further, the energy-based performance was assessed with the help of the performance evaluation criterion (PEC). PEC values indicate that nanofluids do not necessarily represent the most efficient coolants for this type of application. Moreover, at the same jet inlet velocity, a reduction in the heat transfer coefficient of 7% and 20% was observed for nanofluid as compared to base fluid for laminar and turbulent flows, respectively.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 754
Author(s):  
Dustin R. Ray ◽  
Roy Strandberg ◽  
Debendra K. Das

The fluid dynamic and thermal performance of three nanofluids containing aluminum oxide, copper oxide, and silicon dioxide nanoparticles dispersed in 60:40 ethylene glycol and water base fluid as a coolant in a microchannel heatsink are compared here by two methods. The first is a simple analytical analysis, which is acceptable for very low nanoparticle volumetric concentration (1–2%). The second method is a rigorous three-dimensional finite volume conjugate heat transfer and fluid dynamic model based upon a constant heat flux boundary condition, which is applicable for cooling electronic chips. The fluids’ thermophysical properties employed in the modeling are based on empirically derived, temperature dependent correlations from the literature. The analytical and computational results for pressure drop and Nusselt number were in good agreement with the nanofluids showing a maximum difference of 4.1% and 2.9%, respectively. Computations cover the practical range of Reynolds number from 20 to 200 in the laminar regime. Based on equal Reynolds number, all of the nanofluids examined generate a higher convective heat transfer coefficient in the microchannel than the base fluid, while copper oxide provided the most significant increase by 21%. Based on the analyses performed for this study, nanofluids can enhance the cooling performance of the heatsink by requiring a lower pumping power to maintain the same maximum wall temperature. Aluminum oxide and copper oxide nanofluids of 2% concentration reduce the pumping power by 23% and 22%, respectively, while maintaining the same maximum wall temperature as the base fluid.


Sign in / Sign up

Export Citation Format

Share Document