scholarly journals Effect of Saw Type Corrugated Pipe on Laminar Convective Heat Transfer by Using SiC-Water Nanofluid: A Numerical Study

Author(s):  
Md Insiat Islam Rabby ◽  
◽  
Farzad Hossain ◽  
Raihan M M ◽  
Afrina Khan Piya ◽  
...  

Enhancing the heat transfer rate is highly required to remove excessive heat load from the heat transfer apparatus, which may cause massive damage to the equipment. Thus, increment of heat transfer area is one of the prime solutions for this issue. The increment of heat transfer area can be done by enhancing the pipe wall and incorporating nanoparticles with working fluids because nanoparticles showed much faster heat dispersion due to a vast surface area for heat transfer and increased thermal conductivity. Also, small molecules of nanoparticles are allowed for free movement and thus micro-convection, promoting high thermal conductivity. Higher thermal conductivity is mainly the result of a higher heat transfer rate. Therefore, in this study, a saw-type corrugated tube was considered along with the SiC-water nanofluid as the working fluid to determine the improvement of laminar convective heat transfer in terms of the Nusselt number, heat transfer coefficient, and pressure loss. The result demonstrated that by increasing the Reynolds number, the Nusselt number, heat transfer coefficient, and pressure loss were increased significantly with the enhancement of SiC-water concentration. At a Reynolds number of 1200, the maximum increment of Nusselt number in comparison to the base fluid was 9.15% when the corrugated pipe was considered. Meanwhile, the maximum improvement of heat transfer coefficient for SiC-water nanofluid in comparison to the base fluid was 37.66%.

Author(s):  
Nalla Ramu ◽  
P. S. Ghoshdastidar

Abstract This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.


2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


2019 ◽  
Vol 64 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Abhishek Lanjewar ◽  
Bharat Bhanvase ◽  
Divya Barai ◽  
Shivani Chawhan ◽  
Shirish Sonawane

In this study, investigation of convective heat transfer enhancement with the use of CuO–Polyaniline (CuO–PANI) nanocomposite basednanofluid inside vertical helically coiled tube heat exchanger was carried out experimentally. In these experiments, the effects of different parameters such as Reynolds number and volume % of CuO–PANI nanocomposite in nanofluid on the heat transfer coefficient of base fluid have been studied. In order to study the effect of CuO–PANI nanocomposite based nanofluid on heat transfer, CuO nanoparticles loaded in PANI were synthesized in the presence of ultrasound assisted environment at different loading concentration of CuO nanoparticles (1, 3 and 5 wt.%). Then the nanofluids were prepared at different concentrations of CuO–PANI nanocomposite using water as a base fluid. The 1 wt.% CuO–PANI nanocomposite was selected for the heat transfer study for nanofluid concentration in the range of 0.05 to 0.3 volume % and Reynolds number range of was 1080 to 2160 (±5). Around 37 % enhancement in the heat transfer coefficient was observed for 0.2 volume % of 1 wt.% CuO–PANI nanocomposite in the base fluid. In addition, significant enhancement in the heat transfer coefficient was observed with an increase in the Reynolds number and percentage loading of CuO nanoparticle in Polyaniline (PANI).


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hadi Mahdizadeh ◽  
Nor Mariah Adam

Purpose This paper aims to investigate increasing heat transfer in bend tube 90° by fluid injection using nano fluid flow that was performed by expending varying Reynolds number. This paper studies the increased heat transfer in the bent tube that used some parameters to examine the effects of volume fraction, nanoparticle diameter, fluid injection, Reynolds number on heat transfer and flow in a bend pipe. Design/methodology/approach Designing curved tubes increases the thermal conductivity amount between fluid and wall. It is used the finite volume method and simple algorithms to solve the conservation equations of mass, momentum and energy. The results showed that the nanoparticles used in bent tube transfusion increase the heat transfer performance by increasing the volume fraction; it has a direct impact on enhancing the heat transfer coefficient. Findings Heat transfer coefficient enhanced 1.5% when volume fraction increased from 2 % to 6%, the. It is due to the impact of nanoparticles on the thermal conductivity of the fluid. The fluid is injected into the boundary layer flow due to jamming that enhances heat transfer. Curved lines used create a centrifugal force due to the bending and lack of development that increase the heat transfer. Originality/value This study has investigated the effect of injection of water into a 90° bend before and after the bend. Specific objectives are to analyze effect of injection on heat transfer of bend tube and pressure drop, evaluate best performance of mixing injection and bend in different positions and analyze effect of nano fluid volume fraction on injection.


Author(s):  
J. Buongiorno

A base fluid (e.g., water, ethanol, oil) in which nano-sized (1–100 nm) particles of a different material are dispersed, is known as a nanofluid. Nanofluids are attractive because the presence of the nanoparticles enhances energy transport considerably. As a result, nanofluids have higher thermal conductivity and single-phase heat transfer coefficients than their base fluids. In particular, the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter’s. In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion. To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid. These are inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage and gravity. We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids. Based on this finding, we developed a two-component four-equation non-homogeneous equilibrium model for mass, momentum and heat transport in nanofluids. A non-dimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases. Furthermore, a comparison of the nanoparticle and turbulent eddy scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies, so an effect on turbulence intensity is also doubtful.


Author(s):  
Weihong Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang ◽  
Li Yang ◽  
...  

This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance and hole inclination on the convective heat transfer performance of an impinging jet array. Highly resolved heat transfer coefficient distributions on the target plate are obtained utilizing transient liquid crystal over a range of Reynolds numbers varying between 5,000 and 25,000. Effect of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3) are employed composing a test matrix of 36 different geometries. Additionally, the effect of hole inclination (θ: 0°–40°) on the heat transfer coefficient is investigated. Optical hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.


2015 ◽  
Vol 19 (5) ◽  
pp. 1613-1620 ◽  
Author(s):  
Hyder Balla ◽  
Shahrir Abdullah ◽  
Wan Faizal ◽  
Rozli Zulkifli ◽  
Kamaruzaman Sopian

Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.


Author(s):  
Megha Zanzote

Abstract: The performance of the radiator depends on the fluid used in it as a coolant. The conventional fluids like water, ethylene glycol used as a coolant have low thermal conductivity and are not enough for transferring the heat to more extend. Nanoparticles because of their high thermal conductivity enhances the performance of the radiator when added into the base fluid. In the present work Al2O3-CuO/ Water based hybrid nanofluid is used as a coolant for the CFD analysis of automobile radiator. Different mixing ratios (80:20, 60:40,50:50,40:60 and 20:80) of Al2O3-CuO nanoparticles are used in water with 1% volume concentration. The inlet temperature and volume flow rate of fluid are kept constant. The nanofluid with 20:80 mixing ratio of Al2O3-CuO gives maximum enhancement in heat transfer coefficient and Nusselt number than water by 72% and 65% respectively. Keywords: Coolant, Heat Transfer Coefficient, Nusselt Number, Hybrid Nanofluids, Radiator


Author(s):  
Jorge Lallave ◽  
Muhammad M. Rahman

This paper presents a numerical study that characterizes the conjugate heat transfer results of a semi–confined liquid jet impingement on a uniformly heated spinning solid disk of finite thickness and radius. The model covers the entire fluid region including the impinging jet on a flat circular disk and flow spreading out downstream under the confined insulated wall that ultimately gets exposed to a free surface boundary condition. The solution is made under steady state and laminar conditions. The model examines how the heat transfer is affected by adding a secondary rotational flow under semi-confined jet impingement. The study considered various standard materials, namely aluminum, copper, silver, Constantan and silicon; covering a range of flow Reynolds number (220–900), under a broad rotational rate range from 0 to 750 rpm, or Ekman number (7.08×10−5 – ∞), nozzle to target spacing (β = 0.25 – 1.0), disk thicknesses to nozzle diameter ratio (b/dn = 0.25 – 1.67), Prandtl number (1.29 – 124.44) using ammonia (NH3), water (H2O), flouroinert (FC-77) and oil (MIL-7808) as working fluids and solid to fluid thermal conductivity ratio (36.91 – 2222). High thermal conductivity plate materials maintained more uniform and lower interface temperature distributions. Higher Reynolds number increased local heat transfer coefficient reducing the interface temperature difference over the entire wall. Rotational rate increases local heat transfer coefficient under most conditions. These findings are important for the design improvement and control of semi-confined liquid jet impingement under a secondary rotation induced motion.


Author(s):  
John F. Maddox ◽  
Roy W. Knight ◽  
Sushil H. Bhavnani

The local surface temperature, heat flux, heat transfer coefficient, and Nusselt number were measured for an inline array of circular, normal jets of single-phase, liquid water impinging on a copper block with a common outlet for spent flow, and an experimental 2-D surface map was obtained by translating the jet array relative to the sensors. The effects of variation in jet height, jet pitch, confining wall angle, and average jet Reynolds number were investigated. A strong interaction between the effects of the geometric parameters was observed, and a 5° confining wall was seen to be an effective method of managing the spent flow for jet impingement cooling of power electronics. The maximum average heat transfer coefficient of 13,100W=m2K and average Nusselt number of 67.7 were measured at an average jet Reynolds number of 14,000.


Sign in / Sign up

Export Citation Format

Share Document