Optimization of the Rotational Asymmetric Parallel Mechanism for Hip Rehabilitation With Force Transmission Factors

2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Wuxiang Zhang ◽  
Wei Zhang ◽  
Xilun Ding ◽  
Lei Sun

Abstract An asymmetric three-degree-of-freedom parallel mechanism is adopted in rehabilitation robots for assisting patients suffering from stroke or trauma in the hip. It is necessary to keep its kinematic singularity out of the workspace of human normal gait and increase the output power efficiency. Therefore, a novel method is proposed to optimize geometrical parameters of the mechanism. To describe the kinematic singularity in a better way, the improved force transmission indexes based on previous methods are proposed using the reciprocal product and mobility condition of the closed-loop mechanism. The indexes mainly represent the force transmission performance of unactuated parts of subchains and moving platform. Together with the driving force transmission indexes and geometrical constraints, the multiobjective optimization model is established. The differential evolution algorithm, which is widely applied to mechanism optimization, is used to achieve optimal results. The Jacobian matrix singularity and output power efficiency along giving trajectory before and after optimization are compared to verify the effectiveness of the method.

Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


2010 ◽  
Vol 447-448 ◽  
pp. 826-830 ◽  
Author(s):  
Tomohisa Tanaka ◽  
Masahiro Komori ◽  
Jiang Zhu ◽  
Yoshio Saito

Parallel mechanism has many advantages, such as high stiffness, high accuracy, high degree of freedom (DOF), etc. These fine features are suitable for work table of machine tools for production of recent complicated designs. In this study, six axes linear-actuated parallel mechanism was chosen as the basic design for work table. First, geometrical parameters of the table were designed to satisfy the required movable range with minimum cutting load. Then, the work table was actually constructed and its performance was evaluated. From positioning accuracy measurement, it was found that the table is suitable to be used for machining of complicated products. On the other hand, from actual cutting tests of primitive shapes using chemical wood and measurement of the machined shapes, potential of the table for real cutting application was confirmed.


Author(s):  
Soon-il Hong ◽  
Kwang-Pyo Lee ◽  
Eui-Rim Jeong

This paper proposes a digital predistortion (DPD) technique to improve linearization performance when the power amplifier (PA) is driven near the saturation region. The PA is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. However, the PA’s power efficiency increases as the PA output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and degrades the transmit signal quality. According to our simulation, the linearization performance of DPD is degraded abruptly when the PA operates in its saturation region. To relieve this problem, we propose an improved DPD technique. The proposed technique performs on/off control of the adaptive algorithm based on the magnitude of the transmitted signal. Specifically, the adaptation normally works for small and medium signals while it stops for large signals. Therefore, harmful coefficient updates by saturated signals can be avoided. A computer simulation shows that the proposed method can improve the linearization performance compared with the conventional DPD method in highly driven PAs.


Author(s):  
Amin Abedini ◽  
Saeed Onsorynezhad ◽  
Fengxia Wang

Frequency up-conversion is an effective way to increase the output power from a piezoelectric beam, which converts the ambient low-frequency vibration to the resonant vibration of the piezoelectric energy harvesters (PEH) to achieve high electric power output. Frequency up-conversion technologies are realized via impact or non-impact magnetic force to mediate the interaction between the driving beam and the generating beam. Most studies focus on the either linear model prediction or experimental verification of the linear analysis. Few, if any, study the effects of the impact induced nonlinear phenomena on power generation efficiency. In this work, we investigate how to use discontinuous theory to improve the power efficiency of the frequency up-conversion process caused by impacts. The energy harvesting performance of a piezoelectric beam in interaction with a softer beam in periodic motion is studied. The discontinuous dynamical system theory is applied to this problem to study the piezoelectric behavior under periodic motions and its bifurcations. The beams are modeled with two spring-mass-damper systems, and the analytical model of the piezoelectric beam is created based on the linear mechanical-electrical constitutive law of the piezoelectric material, and the linear elastic constitutive law of the substrate. Based on the theoretical model, the analytical solution of the output power is derived in terms of the vibration amplitude, frequency, and the electrical load. The soft beam is subjected to a sinusoidal base excitation, and the impacts of the more flexible beam excite the piezoelectric beam. The performance of the energy harvesting of period one and period two motions have been studied and bifurcation trees for impact velocities, times, displacements and harvested power versus the frequency of the base excitation are obtained.


Author(s):  
A.V. Tyurin ◽  
A.V. Burmistrov ◽  
A.A. Raykov ◽  
S.I. Salikeev

This paper presents an analysis of the indicator power of an oil-free scroll vacuum pump based on the indicator diagrams obtained through high-speed pressure sensors. These values are compared with the results of calculations using a mathematical model of the pump working process. It is shown that the divergence of the calculated results and experimental values does not exceed 4%, which confirms the adequacy of the developed mathematical model. The total power of the scroll pump exceeds the indicator power by more than 2 times due to the friction losses between the face seals and disks of the reciprocal scroll elements, friction losses in the stuffing box seals and rolling bearings, as well as due to the coefficient of efficiency of the motor. The influence of the radial clearance between the scroll elements on the power consumption is considered. It is shown that at low pressures nearing the ultimate pressure, the power increases with the increased clearance, while at inlet pressures exceeding 40 kPa it decreases. The performed analysis can be used for selecting the optimal geometrical parameters of the scroll elements and increasing power efficiency of the pump depending on specific operating conditions.


Author(s):  
Long Kang ◽  
Se-Min Oh ◽  
Wheekuk Kim ◽  
Byung-Ju Yi

In this paper, a new gravity-balanced 3T1R parallel mechanism is addressed. Firstly, structure description, inverse and forward kinematic modeling are performed in detail. Secondly, Jacobian derivation based on screw theory and singularity analysis using Grassmann Line Geometry is performed, and then optimal kinematic design with respect to workspace size, kinematic isotropy and maximum force transmission ratio are conducted. Thirdly, the gravity balancing design using both counterweights and springs is proposed and a prototype of this mechanism is also presented. Results of analysis show that the proposed mechanism has quite a few potential applications.


Author(s):  
Paolo Bosetti ◽  
Stefania Bruschi

One of the major drawbacks of single-point incremental forming process for sheet metal (SPIF) consists in the poor geometrical accuracy of formed parts. This limits the use of SPIF technology and has pushed the development of alternative incremental processes—such as the two-points incremental forming—aimed at improving the forming accuracy. However, these processes require the use of supporting dies and they therefore reduce the competitive advantage of SPIF process. The possibility to compensate for part springback, in order to have the part geometry as close as possible to the nominal one, represents one of the major challenges to make SPIF process suitable for real industrial applications. However, any possible approach in springback compensation must pass through the comprehension of the springback phenomenon. The objective of the paper is to analyze the springback of parts made by SPIF, by evaluating the influence that elastic recovery before and after the part unclamping has on the final part geometry. A SPIF experimental campaign was carried out on a truncated pyramid as case study, by varying both the part geometrical parameters (the wall angle and the height), and the process parameters (the tool step-down size and the feed rate). The material used in this study was the duplex steel DP600 provided in 0.8 mm thick sheets. After forming—but before unclamping—the part geometry was measured by means of of an electronic touch probe mounted on the machine tool-holder, in order to investigate the elastic recovery due to the successive tool laps. After unclamping, the part geometry was measured on a coordinate measuring machine. The influence of geometrical and process parameters was analyzed and the contribution of elastic recovery before and after the part unclamping was assessed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241927
Author(s):  
Syed Zahurul Islam ◽  
Mohammad Lutfi Othman ◽  
Muhammad Saufi ◽  
Rosli Omar ◽  
Arash Toudeshki ◽  
...  

This study analyzes the performance of two PV modules, amorphous silicon (a-Si) and crystalline silicon (c-Si) and predicts energy yield, which can be seen as facilitation to achieve the target of 35% reduction of greenhouse gases emission by 2030. Malaysia Energy Commission recommends crystalline PV modules for net energy metering (NEM), but the climate regime is a concern for output power and efficiency. Based on rainfall and irradiance data, this study aims to categorize the climate of peninsular Malaysia into rainy and dry seasons; and then the performance of the two modules are evaluated under the dry season. A new mathematical model is developed to predict energy yield and the results are validated through experimental and systematic error analysis. The parameters are collected using a self-developed ZigBeePRO-based wireless system with the rate of 3 samples/min over a period of five days. The results unveil that efficiency is inversely proportional to the irradiance due to negative temperature coefficient for crystalline modules. For this phenomenon, efficiency of c-Si (9.8%) is found always higher than a-Si (3.5%). However, a-Si shows better shadow tolerance compared to c-Si, observed from a lesser decrease rate in efficiency of the former with the increase in irradiance. Due to better spectrum response and temperature coefficient, a-Si shows greater performance on output power efficiency (OPE), performance ratio (PR), and yield factor. From the regression analysis, it is found that the coefficient of determination (R2) is between 0.7179 and 0.9611. The energy from the proposed model indicates that a-Si yields 15.07% higher kWh than c-Si when luminance for recorded days is 70% medium and 30% high. This study is important to determine the highest percentage of energy yield and to get faster NEM payback period, where as of now, there is no such model to indicate seasonal energy yield in Malaysia.


2020 ◽  
Vol 184 ◽  
pp. 01012
Author(s):  
Sai Kiran Pullabhatla ◽  
Phaneendra Babu Bobba ◽  
Satyavani Yadlapalli

Power semiconductor devices plays a major role in efficient power conversion. As we have Silicon (Si), Silicon Carbide (SiC) and Gallium Nitride (GaN) based power devices, GaN technologies are ideal for working in high frequency power electronic systems (in MHz). Because the GaN has superior electron mobility and bandgap than the SiC and Si it has superior characteristics like low conduction losses, high switching rate so that there is better power efficiency than SiC, Si based inverter. Here we are using the Gan based High-Electron-Mobility Transistor (HEMT) and SiC and Si based mosfet in the inverter. The proposed inverter of different topologies is designed to transfer the power at >1MHz range. Comparison of the three different switches is done by the output power and the efficiency of the inverter. This paper presents the SPICE simulation results of the class d and class e inverter of output power 1KW.


Sign in / Sign up

Export Citation Format

Share Document