Minimalistic Control for Reaching Absolute State of a One-Legged Dynamic Robot on Uncertain Terrain

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Adar Gaathon ◽  
Amir Degani

Abstract Footstep and path planning for dynamic legged robots is complex, and even if such a plan exists, execution is even harder. We propose a new method for a planar model of a dynamic legged robot that brings the trajectory to an absolute desired destination even on unknown rough terrain with minimal sensing. This can later aid a global planner to reach “way-points” with low destination errors. The basic block of the technique incorporates two consecutive jumps, each triggers a minimalistic control method to govern a sole controller—the leg angle during flight. Only two detection sensors and initial state information are required during implementation. Prior to execution, an optimization process is initiated to obtain the temporal control laws for both jumps. This work presents the process of obtaining the control parameters and studies the performance and limitations of the scheme.

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
JunQiang Xi ◽  
JianMin Meng ◽  
HuiYan Chen

To realize a smooth and quick shift of the positive independent mechanical split path transmission (PIMSPT) equipped with automatic shifting control system (ASCS), the research on the feasibility of improving shift quality by dynamic and cooperative controlling engine, steering clutches, and brakes has been conducted. The shifting control method suited to starting gear of PIMSPT has been proposed. The control method is based on control parameters, such as the driving shaft speed and its derivative. The control laws of steering clutches and brakes are presented during each gear and stage of shifting. Bench and road test results show that the proposed shifting control method can not only shorten the shift time, but also decrease the jerk of shifting effectively.


2017 ◽  
Vol 29 (3) ◽  
pp. 536-545
Author(s):  
Masahiro Ikeda ◽  
◽  
Ikuo Mizuuchi

[abstFig src='/00290003/09.jpg' width='300' text='Energy flow in legged robot' ] As a method of robot movement, legs have the advantage of traversability on rough terrain. However, the motion of a legged robot is accompanied by energy loss. The main causes for this loss could be negative work and contact between the legs and ground. On the other hand, animals with legs are considered to reduce energy loss by using the elasticity of their body. In this study, we analyze the influence of walking, using an elastic passive joint mounted on the trunk of a quadruped robot, on the energy loss. Additionally, we study the energy flow between legs and elastic components. In this study, we clarify a control method for quadruped robots in order to reduce the energy loss of walking. The results of simulating a quadruped walking robot, which has passive joints with elastic components on the trunk, are analyzed and the relationship between each kind of energy loss and the trunk joint’s elasticity is clarified.


2016 ◽  
Vol 28 (6) ◽  
pp. 799-807 ◽  
Author(s):  
Shotaro Mamiya ◽  
◽  
Shigenori Sano ◽  
Naoki Uchiyama

[abstFig src='/00280006/03.jpg' width='300' text='Robotic foot adaptable to rough terrain' ] Practical ambulation must be realized by walking robots to enable social and industrial support by walking robots in human living environments. A four-legged robot that walks through rough terrain effectively does not erase the fact that most legged robots – particularly biped robots – have difficulty negotiating rough terrain. We focus below on a foot structure and landing control for enabling any type of legged robot to walk through rough terrain. When a walking robot lands on the ground, it is difficult to detect the detailed geometry and dynamic properties of the ground surface. The new foot structure we propose adapts to ground surfaces that have different geometries and hardness. The foot has four-part flat soles. The landing controller we apply to a robot with our proposed foot structure increases the stability of contact with the ground. We verify the effectiveness of our proposed foot structure in experiments.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


2014 ◽  
Vol 998-999 ◽  
pp. 613-616
Author(s):  
Li Li ◽  
Dong Ping Wang ◽  
Tsutomu Saito

The flow field was simulated in a 2D convergent-divergent nozzle, for fluidic thrust vectoring with N-S method. Based on the specific design, the effects of control parameters of secondary jet injection is investigated, and a method is proposed to calculate the initial state of secondary jet, which is different from original hypothesis of stagnation. The results showed that the two methods have closed results and the stagnation hypothesis is suitable for the calculation of the initial state of secondary jet.


Author(s):  
Ho-Hoon Lee

This paper proposes a path planning strategy for high-performance anti-swing control of overhead cranes, where the anti-swing control problem is solved as a kinematic problem. First, two anti-swing control laws, one for hoisting up and the other for hoisting down, are proposed based on the Lyapunov stability theorem. Then a new path-planning strategy is proposed based on the concept of minimum-time control and the proposed anti-swing control laws. The proposed path planning is free from the usual constraints of small load swing, slow hoisting speed, and small hoisting distance. The effectiveness of the proposed path planning is shown by computer simulation with high hoisting speed and hoisting ratio.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


Author(s):  
Haipeng Chen ◽  
Wenxing Fu ◽  
Yuze Feng ◽  
Jia Long ◽  
Kang Chen

In this article, we propose an efficient intelligent decision method for a bionic motion unmanned system to simulate the formation change during the hunting process of the wolves. Path planning is a burning research focus for the unmanned system to realize the formation change, and some traditional techniques are designed to solve it. The intelligent decision based on evolutionary algorithms is one of the famous path planning approaches. However, time consumption remains to be a problem in the intelligent decisions of the unmanned system. To solve the time-consuming problem, we simplify the multi-objective optimization as the single-objective optimization, which was regarded as a multiple traveling salesman problem in the traditional methods. Besides, we present the improved genetic algorithm instead of evolutionary algorithms to solve the intelligent decision problem. As the unmanned system’s intelligent decision is solved, the bionic motion control, especially collision avoidance when the system moves, should be guaranteed. Accordingly, we project a novel unmanned system bionic motion control of complex nonlinear dynamics. The control method can effectively avoid collision in the process of system motion. Simulation results show that the proposed simplification, improved genetic algorithm, and bionic motion control method are stable and effective.


2013 ◽  
Vol 278-280 ◽  
pp. 629-632
Author(s):  
Li Peng Yuan ◽  
Amur Al Yahmedi ◽  
Li Ming Yuan

Here, we consider the walking gait patterns. And we presented a hybrid model for a passive 2D walker with knees and point feet. The dynamics of this model were fully derived analytically. We have also proposed virtual coupling control laws. The control strategy is formed by taking into account the features of mechanical energy dissipation and restoration. And we also prove some walking rules maybe true.


Sign in / Sign up

Export Citation Format

Share Document