Embedded Spherical Microlasers for In Vivo Diagnostic Biomechanical Performances

Author(s):  
Maurizio Manzo ◽  
Omar Cavazos ◽  
Erick Ramirez-Cedillo ◽  
Hector R. Siller

Abstract In this article, we propose to use spherical microlasers that can be attached to the surface of bones for in vivo strain monitoring applications. The sensing element is made of mixing polymers, namely, PEGDA-700 (Sigma Aldrich, St. Louis, MO) and Thiocure TMPMP (Evan Chemetics, Teaneck, NJ) at 4:1 ratio in volume doped with rhodamine 6G (Sigma Aldrich, St. Louis, MO) laser dye. Solid-state microlasers are fabricated by curing droplets from the liquid mixture using ultraviolet (UV) light. The sensing principle relies on morphology-dependent resonances; any changes in the strain of the bone causes a shift of the optical resonances, which can be monitored. The specimen is made of a simulated cortical bone fabricated with photopolymer resin via an additive manufacturing process. The light path within the resonator is found to be about perpendicular to the normal stress' direction caused by a bending moment. Therefore, the sensor measures the strain due to bending indirectly using the Poisson effect. Two experiments are conducted: 1) negative bone deflection (called loading) and 2) positive bone deflection (called unloading) for a strain range from 0 to 2.35 × 10−3 m/m. Sensitivity values are ∼19.489 and 19.660 nm/ε for loading and unloading experiments, respectively (percentage difference is less than 1%). In addition, the resolution of the sensor is 1 × 10−3 ε (m/m) and the maximum range is 11.58 × 10−3 ε (m/m). The quality factor of the microlaser is maintaining about constant (order of magnitude 104) during the experiments. This sensor can be used when bone location accessibility is problematic.

Author(s):  
Omar Cavazos ◽  
Maurizio Manzo ◽  
Erick Ramírez-Cedillo ◽  
Hector R. Siller

Abstract Bones experience mechanical loads on a daily basis. It is difficult to obtain biomechanical performances in-vivo measurements. When implants are integrated with bones after surgery, especially in aged individuals, their osseointegration can compromise the structural integrity of bones; for this reason, it is important to monitor the evolution of the mechanical properties of bones with some in-vivo diagnostic technique. In this study, we propose to integrate optical microsensing devices into bones. To simulate the working principle, a sensor is integrated with a 3-D printed bone. The sensing element is a dye-doped optical microlaser based on the morphology dependent resonance (MDR) shifts also called the whispering gallery mode phenomenon (WGM). When the microlaser is excited by a light source, the fluorescence from the dye couples with the optical resonances. These optical resonances are very sensitive to any perturbation of the microlasers’s morphology. Therefore, the local strain variation of the bone can be related to the shift of the optical resonances. This in-vivo technique monitors the biomechanical performance of bones with implants and prosthetics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Nian Liu ◽  
Xiao Chen ◽  
Xia Sun ◽  
Xiaolian Sun ◽  
Junpeng Shi

AbstractPersistent luminescence nanoparticles (PLNPs) are unique optical materials that emit afterglow luminescence after ceasing excitation. They exhibit unexpected advantages for in vivo optical imaging of tumors, such as autofluorescence-free, high sensitivity, high penetration depth, and multiple excitation sources (UV light, LED, NIR laser, X-ray, and radiopharmaceuticals). Besides, by incorporating other functional molecules, such as photosensitizers, photothermal agents, or therapeutic drugs, PLNPs are also widely used in persistent luminescence (PersL) imaging-guided tumor therapy. In this review, we first summarize the recent developments in the synthesis and surface functionalization of PLNPs, as well as their toxicity studies. We then discuss the in vivo PersL imaging and multimodal imaging from different excitation sources. Furthermore, we highlight PLNPs-based cancer theranostics applications, such as fluorescence-guided surgery, photothermal therapy, photodynamic therapy, drug/gene delivery and combined therapy. Finally, future prospects and challenges of PLNPs in the research of translational medicine are also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Swetledge ◽  
Renee Carter ◽  
Rhett Stout ◽  
Carlos E. Astete ◽  
Jangwook P. Jung ◽  
...  

AbstractPolymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vittorino Lanzio ◽  
Gregory Telian ◽  
Alexander Koshelev ◽  
Paolo Micheletti ◽  
Gianni Presti ◽  
...  

AbstractThe combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.


Author(s):  
Vladimir P. Zhdanov

AbstractOne of the suggested ways of the use of nanoparticles in virology implies their association with and subsequent deactivation of virions. The conditions determining the efficiency of this approach in vivo are now not clear. Herein, I propose the first kinetic model describing the corresponding processes and clarifying these conditions. My analysis indicates that nanoparticles can decrease concentration of infected cells by a factor of one order of magnitude, but this decrease itself (without feedback of the immune system) is insufficient for full eradication of infection. It can, however, induce delay in the progress of infection, and this delay can help to form sufficient feedback of the immune system.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Sada Raza ◽  
Kinga Matuła ◽  
Sylwia Karoń ◽  
Jan Paczesny

Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.


2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


2014 ◽  
Vol 90 ◽  
pp. 157-165
Author(s):  
Suchinder K. Sharma ◽  
D. Gourier ◽  
B. Viana ◽  
T. Maldiney ◽  
E. Teston ◽  
...  

ZnGa2O4(ZGO) is a normal spinel. When doped with Cr3+ions, ZGO:Cr becomes a high brightness persistent luminescence material with an emission spectrum perfectly matching the transparency window of living tissues. It allowsin vivomouse imaging with a better signal to background ratio than classical quantum dots. The most interesting characteristic of ZGO:Cr lies in the fact that its LLP can be excited with red light, well below its band gap energy and in the transparency window of living tissues. A mechanism based on the trapping of carriers localized around a special type of Cr3+ions namely CrN2can explain this singularity. The antisite defects of the structure are the main responsible traps in the persistent luminescence mechanism. When located around Cr3+ions, they allow, via Cr3+absorption, the storage of not only UV light but also all visible light from the excitation source.


Sign in / Sign up

Export Citation Format

Share Document