A Transient Mixed Elastohydrodynamic Lubrication Model for Helical Gear Contacts

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
A. S. Chimanpure ◽  
A. Kahraman ◽  
D. Talbot

Abstract In this study, a non-Newtonian, transient, isothermal, mixed elastohydrodynamic lubrication (EHL) model is proposed for helical gear contacts. The model accounts for nonelliptical contacts subject to spatially varying sliding and rolling velocity fields that are not aligned with any principal axis of the contact region, which is the case for helical gear contacts. The time-varying changes pertaining to key contact parameters and relative motion of roughness profiles on mating tooth surfaces are captured simultaneously to follow the contact from the root to the tip of a tooth while accounting for the transient effect due to relative motions of the roughness profiles. Actual tooth load distributions, contact kinematics, and compliances of helical gear contacts are provided to this model by an existing helical gear load distribution model. Measured three-dimensional roughness profiles covering the entire meshing zone are incorporated in the analyses to investigate its impact on the EHL conditions as well as mechanical power loss. Results of a parametric sensitivity study are presented to demonstrate the influence of operating conditions and surface roughness on the EHL behavior and the resultant gear mesh mechanical power loss of an example helical gear pair. The accuracy of the proposed mixed-EHL model is assessed by comparing the mechanical power loss predictions to available experimental results.

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
D. Talbot ◽  
S. Li ◽  
A. Kahraman

A modeling methodology is proposed to predict load-dependent (mechanical) power loss of cylindrical roller bearings under combined radial and moment loading with focus on planetary gear set planet bearings. This methodology relies on two models. The first model is a bearing load distribution model to predict load intensities along rolling element contacts due to combined force–moment loading. This model takes into account planet bearing macrogeometry as well as micromodifications to the roller and race surfaces. The second model is an elastohydrodynamic lubrication (EHL) model employed to predict rolling power losses of bearing contacts with load intensities predicted by the load distribution model. The bearing mechanical power loss methodology is applied to bearings of an automotive planetary gear set to quantify the sensitivity of mechanical power loss to key bearing, lubrication and surface parameters as well as operating speed, load and temperature conditions.


Author(s):  
Sheng Li

This study proposes a formulation for the description of the gear mesh mechanical power loss under the thermal tribodynamic condition. A six degree-of-freedom motion equation set that models the vibratory motions of a general spur gear pair is coupled with the governing equations for the description of the gear thermal mixed elastohydrodynamic lubrication to include the interactions between the gear dynamics and gear tribology disciplines in the modeling of the gear mesh mechanical power loss. The important role of the gear thermal tribo-dynamics in power loss is demonstrated by comparing the predictions of the proposed model to those under the thermal quasi-static condition, and the iso-thermal tribo-dynamic condition, respectively.


Author(s):  
S. Li ◽  
A. Kahraman

A physics-based model is proposed to predict load dependent (mechanical) power loss of spur gear pairs by using a specialized gear elastohydrodynamic lubrication (EHL) model. The EHL model includes time variations of all key contact parameters such as surface velocities, radii of curvature and normal load in their continuous forms such that a continuous analysis of a tooth contact from its root to tip can be performed. The EHL model has the capability to simulate any gear contacts represented by condition ranging from full EHL to mixed or boundary EHL conditions. Predicted transient pressure and film thickness distributions are used to determine the instantaneous as well as the overall mechanical power loss of the gear mesh. Correction factors are introduced to account for thermal effects. At the end, capabilities and accuracy of the proposed model are demonstrated by comparing its predictions to experimental data.


2019 ◽  
Vol 72 (3) ◽  
pp. 333-340
Author(s):  
Mingyong Liu ◽  
Peidong Xu ◽  
Jinxi Zhang ◽  
Huafeng Ding

Purpose Power loss is an important index to evaluate the transmission performance of a gear pair. In some cases, the starved lubrication exists on the gear contact interface. The purpose of this paper is to reveal the mechanical power loss of a helical gear pair under starved lubrication. Design/methodology/approach A starved thermal-elastohydrodynamic lubrication (EHL) model is proposed to evaluate the tribological properties of a helical gear pair. The numerical result has been validated against the published simulation data. Based on the proposed model, the influence of thermal effect, working conditions, inlet oil-supply layer and surface roughness on the mechanical power loss and lubrication performance has been discussed. Findings Results show that the thermal effect has a significant effect on the tribological properties of helical gear pair, especially on mechanical power loss. For a specified working condition, there is an optimal oil supply for gear lubrication to obtain the state of full film lubrication. Meanwhile, it reveals that the mechanical power loss increases with the increase of the surface roughness amplitude. Originality/value In this paper, a starved thermal-EHL model has been developed for the helical gear pair based on the finite line contact theory. This model can be used to analyze the tribological properties of gear pair from full film lubrication to mixed lubrication. The results can provide the tribological guidance for design of a helical gear pair.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Mingyong Liu ◽  
Peidong Xu ◽  
Chunai Yan

In this study, a comprehensive mechanical efficiency model based on the thermal elastohydrodynamic lubrication (TEHL) is developed for a helical gear pair. The tribological performance of the helical gear pair is evaluated in terms of the average film thickness, friction coefficient, mechanical power loss, mechanical efficiency, etc. The influence of basic design parameters, working conditions, thermal effect, and surface roughness are studied under various transmission ratios. Results show that the contribution of thermal effect on the tribological performance is remarkable. Meanwhile, the rolling power loss constitutes an important portion of the total mechanical power loss, especially around the meshing position where the pitch point is located in the middle of contact line and the full elastohydrodynamic lubrication (EHL) state with the friction coefficient less than 0.005. The proper increase of normal pressure angle and number of tooth can improve the tribological performance. The influence of helix angle on the mechanical efficiency is less significant. A positive addendum modification coefficient for pinion and a negative addendum modification coefficient for wheel are good for improving the mechanical efficiency. The results provide the tribological guidance for design of a helical gear pair in engineering.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


Author(s):  
Yanfang Liu ◽  
Qiang Liu ◽  
Peng Dong

An involute spur gear pair meshing model is firstly provided in this study to achieve relevant data such as rolling velocity, sliding velocity, curvature radius etc. These data are needed in a transient, Newtonian elastohydrodynamic lubrication (EHL) model which is provided later. Based on these two models, the behavior of an engaged spur gear pair during the meshing process is investigated under dynamic conditions, film thickness, pressure, friction coefficient etc. could be achieved through the models. Then, power loss under certain operating condition is calculated. Relationship between power loss and lubrication performance is also analyzed.


Author(s):  
David Talbot ◽  
Ahmet Kahraman ◽  
Satya Seetharaman

A new fluid dynamics model is proposed to predict the power losses due to pocketing of air, oil, or an air-oil mixture in the helical gear meshes. The proposed computational procedure treats a helical gear pair as combination of a number of narrow face width spur gear segments staggered according to the helix angle and forms a discrete, fluid dynamics model of the medium being pocketed in the gear mesh. Continuity and conservation of momentum equations are applied to each coupled control volume filled with a compressible fluid mixture to predict fluid pressure and velocity distributions from, which the instantaneous pocketing power loss is calculated. The proposed model is exercised in order to investigate fluid pressure and velocity distributions in time, as well as pocketing power loss as a function of speed, helix angle and oil-to-air ratio.


Author(s):  
Nabih Feki ◽  
Maroua Hammami ◽  
Olfa Ksentini ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

In this work, a nonlinear dynamic model of an FZG-A10 spur gear was investigated by taking into account for the actual time-varying gear mesh stiffness and the frictional effects between meshing gear teeth to evaluate the influence of the dynamic effects on frictional gear power loss predictions. The equations of motion of the generalized translational-torsional coupled dynamic system derived from Lagrange principle was extended compared to authors’ previous work in order to account for time dependent coefficient of friction and profile errors. The dynamic response of spur gears, computed by an iterative implicit scheme of Newmark, is changed due to the presence of coefficient of friction and profile errors. A dynamic analysis was performed and the influence of frictional effect including tooth shape deviations, in particular, was scrutinized since a time-dependent coefficient of friction is deeply related to the gear surface roughness and all parameters dependent on gears error profiles are introduced in the proposed model. The predicted meshing gear power losses with constant and local friction coefficient were compared. The influence of constant and variable profile errors considered in the local coefficient of friction formulation was also studied and their corresponding root mean square (RMS) power loss was compared to the experimental results. The results using FZG A10 spur gear pairs running under several operating conditions (different loads and speeds) validate the superiority of the proposed model against previous similar models.


1993 ◽  
Vol 115 (3) ◽  
pp. 487-492 ◽  
Author(s):  
H. P. Evans ◽  
R. W. Snidle

The paper describes an elastohydrodynamic lubrication (EHL) analysis of heavily loaded contacts between the teeth of Wildhaber-Novikov (W-N) circular arc gears. The contacts occurring in gears of this type are elliptical in shape with lubricant entrainment in the direction of the major axis of the contact. The results shown refer to a particular practical design and cover a range of operating conditions encountered in practice. Because of the high rolling velocity in W-N gears a relatively thick oil film is predicted over most of the contact. Severe thinning of the film occurs at the sides of the contact, however. Results of the full EHL analysis are compared with predictions using a published film thickness formula based upon analysis of moderately loaded elliptical contacts. It is suggested that the side-thinning effect is dependent upon the relative elastic deformation occurring in the contact.


Sign in / Sign up

Export Citation Format

Share Document