Effect of the honeycomb tip with injection on the aerodynamic performance in a 1.5-stage turbine

2020 ◽  
pp. 1-25
Author(s):  
Jianyang Yu ◽  
Yabo Wang ◽  
YanPing Song ◽  
Fu Chen

Abstract Three kinds of rotor tip configurations have been investigated numerically in the LISA 1.5-stage turbine, including the flat tip, the honeycomb tip and the honeycomb tip with injection. The effect of the cavity depth and the injection mass flow rate on the turbine performance is studied in detail, evaluated by the isentropic total-to-total efficiency and the tip leakage mass flow rate. The Reynolds-averaged Navier-Stokes (RANS) method and the k-ω turbulence model are adopted in all the present computations. The numerical results show that the first stage efficiency is increased by up to 0.66% and the tip leakage mass flow rate is reduced by about 1.87% of the main flow. The pressure field and the flow feature inside the gap are explored. The flow structures and the total pressure loss contours in the rotor passage are presented. Finally, the total pressure loss is newly defined by considering the injection effect. It is indicated that the injection mass flow rate should be carefully determined for excellent overall performance.

Author(s):  
Yabo Wang ◽  
Yanping Song ◽  
Jianyang Yu ◽  
Fu Chen

Abstract The effect of five arrangements of the double-slot injections on the leakage flow control is studied in a honeycomb-tip turbine cascade numerically. The honeycomb tip is covered with 67 intact honeycomb cavities, since the uneven tip is wearable and the cavity vortex could realize the aerodynamic sealing for the leakage flow. Then in the present study, a pair of injection slots is arranged blow each cavity, aiming to enhance the leakage flow suppression by modifying the cavity vortex. According to the orientation of the two slots, five designs of the double-slot injections are proposed. In detail, the two slots are opposite to each other or keep tangential to the original cavity vortex roughly. The three dimensional calculations were completed by using Reynolds-averaged Navier-Stokes (RANS) method and the k-ω turbulence model in the commercial software ANSYS CFX. The estimation of these tip designs is mainly according to the tip leakage mass flow rate and the total pressure loss. Firstly, the injection structures induced by the slots can be divided into X- and T-types inside the cavity. The results show that the T-type structure is more effective in reducing the tip leakage mass flow rate, with the maximum reduction up to 48.2%. Then the effect on the flow field inside the gap and the secondary flow in the upper passage is analyzed. Compared with the flat tip, the span-wise position of the tip leakage vortex core drops within the cascade and the range of the affected loss region expands. At the cascade exit, the tip leakage vortex moves toward the passage vortex near the casing, while the latter’s core rises. The position changes of the secondary vortices eventually determine the total pressure loss contour downstream the cascade. Finally, the injection total pressure and the upper casing motion are investigated. Interestingly, the injection intensity (mass flow rate) increases with the injection total pressure but this value decreases as the casing speed increases. The tip leakage mass flow rate decreases linearly as increasing the injection total pressure or the casing speed. Yet the averaged total pressure loss downstream the cascade increases with the injection total pressure but appears a nonlinear distribution against the casing speed.


Author(s):  
Brian M. T. Tang ◽  
Marko Bacic ◽  
Peter T. Ireland

This paper presents a computational investigation into the impact of cooling air injected through the stationary over-tip turbine casing on overall turbine efficiency. The high work axial flow turbine is representative of the high pressure turbine of a civil aviation turbofan engine. The effect of active modulation of the cooling air is assessed, as well as that of the injection locations. The influence of the through-casing coolant injection on the turbine blade over-tip leakage flow and the associated secondary flow features are examined. Transient (unsteady) sliding mesh simulations of a one turbine stage rotor-stator domain are performed using periodic boundary conditions. Cooling air configurations with a constant total pressure air supply, constant mass flow rate and actively controlled total pressure supply are assessed for a single geometric arrangement of cooling holes. The effects of both the mass flow rate of cooling air and the location of its injection relative to the turbine rotor blade are examined. The results show that all of the assessed cooling configurations provided a benefit to turbine row efficiency of between 0.2 and 0.4 percentage points. The passive and constant mass flow rate configurations reduced the over-tip leakage flow, but did so in an inefficient manner, with decreasing efficiency observed with increasing injection mass flow rate beyond 0.6% of the mainstream flow, despite the over-tip leakage mass flow rate continuing to reduce. By contrast, the active total pressure controlled injection provided a more efficient manner of controlling this leakage flow, as it permitted a redistribution of cooling air, allowing it to be applied in the regions close to the suction side of the blade tip which more directly reduced over-tip leakage flow rates and hence improved efficiency. Cooling air injected close to the pressure side of the rotor blade was less effective at controlling the leakage flow, and was associated with increased aerodynamic loss in the passage vortex.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Yan Liu ◽  
Tian-Long Zhang ◽  
Min Zhang ◽  
Meng-Chao Zhang

A comparative experimental and numerical analysis is carried out to assess the aerodynamic performance of a novel partial shroud in a straight turbine cascade. This partial shroud is designed as a combination of winglet and shroud. A plain tip is employed as a baseline case. A pure winglet tip is also studied for comparison. Both experiments and predictions demonstrate that this novel partial shroud configuration has aerodynamic advantages over the pure winglet arrangement. Predicted results show that, relative to the baseline blade with a plain tip, using the partial shroud can lead to a reduction of 20.89% in the mass-averaged total pressure coefficient on the upper half-span of a plane downstream of the cascade trailing edge and 16.53% in the tip leakage mass flow rate, whereas the pure winglet only decreases these two performance parameters by 11.36% and 1.32%, respectively. The flow physics is explored in detail to explain these results via topological analyses. The use of this new partial shroud significantly affects the topological structures and total pressure loss coefficients on various axial cross sections, particularly at the rear part of the blade passage. The partial shroud not only weakens the tip leakage vortex (TLV) but also reduces the strength of passage vortex near the casing (PVC) endwall. Furthermore, three partial shrouds with width-to-pitch ratios of 3%, 5%, and 7% are considered. With an increase in the width of the winglet part, improvements in aerodynamics and the tip leakage mass flow rate are limited.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Nicolás García Rosa ◽  
Guillaume Dufour ◽  
Roger Barènes ◽  
Gérard Lavergne

A detailed study of the air flow through the fan stage of a high-bypass, geared turbofan in windmilling conditions is proposed, to address the key performance issues of this severe case of off-design operation. Experiments are conducted in the turbofan test rig of ISAE, specifically suited to reproduce windmilling operation in an ambient ground setup. The engine is equipped with conventional measurements and radial profiles of flow quantities are measured using directional five-hole probes to characterize the flow across the fan stage and derive windmilling performance parameters. These results bring experimental evidence of the findings of the literature that both the fan rotor and stator operate under severe off-design angle-of-attack, leading to flow separation and stagnation pressure loss. The fan rotor operates in a mixed fashion: spanwise, the inner sections of the rotor blades add work to the flow while the outer sections extract work and generate a pressure loss. The overall work is negative, revealing the resistive loads on the fan, caused by the bearing friction and work exchange in the different components of the fan shaft. The parametric study shows that the fan rotational speed is proportional to the mass flow rate, but the fan rotor inlet and outlet relative flow angles, as well as the fan load profile, remain constant, for different values of mass flow rate. Estimations of engine bypass ratio have been done, yielding values higher than six times the design value. The comprehensive database that was built will allow the validation of 3D Reynolds-averaged Navier–Stokes (RANS) simulations to provide a better understanding of the internal losses in windmilling conditions.


Author(s):  
Jiahui Jin ◽  
Yanping Song ◽  
Jianyang Yu ◽  
Fu Chen

The influence of different arbitrary blade tip shapes on restraining the tip leakage flow in a highly loaded turbine cascade has been numerically studied. A combined method of establishing and optimizing the arbitrary blade tip shape is proposed by using B-spline surface modeling, Kriging model and genetic optimization algorithm. The results show that the Kriging model established by the B-spline surface modeling method can accurately fit the relationship between the arbitrary blade tip shape and the relevant aerodynamic parameters. The optimal leakage mass flow tip and the optimal total pressure loss tip obtained by genetic algorithm both have strong inhibitory effects on tip leakage flow. Compare to the flat tip at 1%H gap height, the tip leakage mass flow of the optimal leakage mass flow case and the optimal total pressure loss case decrease by 11.14% and 10.23%, respectively, the area-average total pressure loss at exit section is reduced by 8.08% and 7.41%, respectively.


2015 ◽  
Vol 789-790 ◽  
pp. 540-548 ◽  
Author(s):  
Cleopatra Florentina Cuciumita ◽  
Daniel Olaru ◽  
Valeriu Vilag ◽  
Ionut Porumbel ◽  
Sergiy Riznyk ◽  
...  

The paper presents the total pressure experimental measurements carried out at the Romanian Research and Development Institute for Gas Turbines COMOTI in order to determine the total pressure losses in the Inter - Turbine Duct of a two spools gas turbine, as a function of the gas turbine operating regime (mass flow rate) and rotational speed. The Inter - Turbine Duct experimental assembly has been designed, manufactured and tested at COMOTI. The total pressures were measured as a function of the pre-swirling angle, which simulates the influence of the high pressure turbine rotational speed located upstream of the Inter turbine duct in the real gas turbine, as well as for three operational regimes, without the pre-swirlers modules. The results indicate that the total pressure loss along the Inter - Turbine Duct is of maximum 0.9 %. The lowest overall total pressure loss occurs at 0o pre-swirling angle, around 0.8%, while along the ITD struts, the lowest pressure loss is obtained for a 15o pre-swirling, below 0.1%. The influence of the operating regime on the total pressure loss was found to be linearly, the pressure loss increasing with the reduced mass flow rate, between 1% and 1.9% overall, and between about 0.1% and 0.4 % along the struts.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4758 ◽  
Author(s):  
Eun Cheol Lee ◽  
Seung-Won Cha ◽  
Hee-Soo Kwon ◽  
Tae-Seong Roh ◽  
Hyoung Jin Lee

In this study, numerical simulations were conducted to confirm the possibility of improved mixing performance by using a fluidic oscillator as a fuel injector. Three-dimensional URANS non-reacting simulations were conducted to examine air–fuel mixing in a supersonic flow field of Mach 3.38. The numerical methods were validated through simulations of the oscillating flow generated from the fluidic oscillator. The results show that the mass flow rate and momentum are reduced at the outlet because the total pressure loss increases inside the fluidic oscillator, which means that higher pressure needs to be applied to supply the same mass flow rate. The simulation showed that the flow structure varies over time as the injected flow is swept laterally. With lateral injection, the fuel distribution is long and narrow, and asymmetric vortexes are generated. However, with central injection, the fuel distribution is relatively similar to the case of using a simple injector. Compared to the simple injector, the penetration length, flammable area, and mixing efficiency were improved. However, the total pressure loss in the flow field increases as well. The results showed that the supersonic fluidic oscillator could be fully utilized as a means to enhance the mixing effect, however a method to reduce the total pressure loss is necessary for practical application.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


2021 ◽  
Author(s):  
Raghuvaran D. ◽  
Satvik Shenoy ◽  
Srinivas G

Abstract Axial flow fans (AFF) are extensively used in various industrial sectors, usually with flows of low resistance and high mass flow rates. The blades, the hub and the shroud are the three major parts of an AFF. Various kinds of optimisation can be implemented to improve the performance of an AFF. The most common type is found to be geometric optimisation including variation in number of blades, modification in hub and shroud radius, change in angle of attack and blade twist, etc. After validation of simulation model and carrying out a grid independence test, parametric analysis was done on an 11-bladed AFF with a shroud of uniform radius using ANSYS Fluent. The rotational speed of the fan and the velocity at fan inlet were the primary variables of the study. The variation in outlet mass flow rate and total pressure was studied for both compressible and incompressible ambient flows. Relation of mass flow rate and total pressure with inlet velocity is observed to be linear and exponential respectively. On the other hand, mass flow rate and total pressure have nearly linear relationship with rotational speed. A comparison of several different axial flow tracks with the baseline case fills one of the research gaps.


Sign in / Sign up

Export Citation Format

Share Document