Mechanosensing of a Graphene Flake on a Bent Beam

2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Yue Hu ◽  
Jiantao Leng ◽  
Tienchong Chang

Abstract The ability of mechanosensing is essential for intelligent systems. Here we show by molecular dynamics (MD) simulations that a graphene flake on a bent beam exhibits amazing mechanosensing behavior, termed flexotaxis. The graphene flake can perceive the beam bending gradient which indeed leads to a gradient of atomic density that produces a driving force on the flake toward the direction of increasing density. An analytical model is developed to further confirm the mechanism, and the simulation results can be well reproduced by the model. Our findings may have general implications not only for the potential applications of graphene as sensing elements in nanoscale intelligent devices but also for the exploration of mechanosensing capability of other two-dimensional materials.

2022 ◽  
Author(s):  
Ye Ming Qing ◽  
Yongze Ren ◽  
Dangyuan Lei ◽  
Hui Feng Ma ◽  
Tie Jun Cui

Abstract Strong interaction between electromagnetic radiation and matter leads to the formation of hybrid light-matter states, making the absorption and emission behavior different from those of the uncoupled states. Strong coupling effect results in the famous Rabi splitting and the emergence of new polaritonic eigenmodes, exhibiting spectral anticrossing behavior and unique energy-transfer properties. In recent years, there has been a rapidly increasing number of works focusing on strong coupling between nanostructures and two-dimensional materials (2DMs), because of the exceptional properties and applications they demonstrate. Here, we review the significant recent advances and important developments of strong light-matter interactions in 2DMs-based nanostructures. We adopt the coupled oscillator model to describe the strong coupling and give an overview of various hybrid nanostructures to realize this regime, including graphene-based nanostructures, black phosphorus-based nanostructures, transition-metal dichalcogenides-based nanostructures, etc. In addition, we discuss potential applications that can benefit from these effects and conclude our review with a perspective on the future of this rapidly emerging field.


2017 ◽  
Vol 84 (8) ◽  
Author(s):  
Hong Gao ◽  
Hongwei Zhang ◽  
Zhengrong Guo ◽  
Tienchong Chang ◽  
Li-Qun Chen

Intrinsic driving mechanism is of particular significance to nanoscale mass delivery and device design. Stiffness gradient-driven directional motion, i.e., nanodurotaxis, provides an intrinsic driving mechanism, but an in-depth understanding of the driving force is still required. Based on molecular dynamics (MD) simulations, here we investigate the motion behavior of a graphene flake on a graphene substrate with a stiffness jump. The effects of the temperature and the stiffness configuration on the driving force are discussed in detail. We show that the driving force is almost totally contributed by the unbalanced edge force and increases with the temperature and the stiffness difference but decreases with the stiffness level. We demonstrate in particular that the shuttle behavior of the flake between two stiffness jumps on the substrate can be controlled by the working temperature and stiffness configuration of the system, and the shuttle frequency can be well predicted by an analytical model. These findings may have general implications for the design of nanodevices driven by stiffness jumps.


RSC Advances ◽  
2018 ◽  
Vol 8 (21) ◽  
pp. 11799-11806 ◽  
Author(s):  
Peng Zhang ◽  
Xibin Yang ◽  
Wei Wu ◽  
Lifen Tian ◽  
Daxi Xiong ◽  
...  

Exploring two-dimensional materials with novel properties is becoming particularly important due to their potential applications in future electronics and optoelectronics.


2021 ◽  
Vol 13 (12) ◽  
pp. 6883
Author(s):  
Kaiting Zhang ◽  
Jie Chang ◽  
Chaoyang Tan ◽  
Hui Han

Photodetectors based on two-dimensional (2D) materials have great potential applications in the field of new energy, such as fuel cells, solar cells, and other fields. Van der Waals (vdW) heterojunction photodiodes are expected to be one of the promising applications of two-dimensional materials due to the photoelectric properties without consideration of lattice mismatch. High-efficiency photoelectric sensors based on two-dimensional materials have great significance to reducing the energy consumption of devices. Here, we build a complex vdW heterostructure by combining InS0.3Se0.7 with another suitable 2D material WS2. Few-layer graphite was used as electrodes to enhance the optoelectronic performance of indium monochalcogenides. Evident photocurrent is observed in the InS0.3Se0.7/WS2 vdW heterostructure device arising from the formed p–n junction at the interface. The uniformity and photoresponse of the InS0.3Se0.7/WS2 vdW heterostructure has been further investigated by the photocurrent mapping. It shows that the entire photovoltaic current was originated from the InS0.3Se0.7/WS2 vdW heterojunction by scanning photocurrent microscope images. Furthermore, the response speed is enhanced at small bias voltage. The transient photoresponse can be well reproduced in almost 100 cycles, indicating the good repeatable optoelectronic performance. Our study indicates that the as-prepared InS0.3Se0.7/WS2 vdW heterostructures are attractive building blocks for photodetectors application. Our findings will open up a new way to further develop high-performance, low-power, and energy-efficient photodetectors based on indium monochalcogenides.


2016 ◽  
Vol 4 (26) ◽  
pp. 10159-10165 ◽  
Author(s):  
Zhiwei Huang ◽  
Tianmin Wu ◽  
Shuang Kong ◽  
Qing-Long Meng ◽  
Wei Zhuang ◽  
...  

Using a facile doping strategy, the thermoelectric performance of tungsten disulfide is enhanced up to 70 times. Our study will stimulate further exploration of the potential applications in thermoelectrics for transition metal dichalcogenide semiconductors and other two-dimensional materials.


2020 ◽  
Vol 29 (6) ◽  
pp. 28-32
Author(s):  
Hyejin RYU

A new type of degree of freedom in terms of valley symmetry has recently emerged, allowing an additional control, in addition to the traditional controls of the charge and the spin degrees of freedom, which are widely used in transistors and in spintronic devices, respectively. Valleytronics is a new type of electronics having great potential for faster and more efficient information processing and for high-density data storage in next-generation devices. Two-dimensional materials are considered to be ideal systems for investigating valleytronics due to many systems having two distinguishable valleys of opposite spin textures. In this article, we demonstrate the fundamental properties related to the valley degree of freedom in two-dimensional materials and its potential applications for valleytronic devices.


Sign in / Sign up

Export Citation Format

Share Document