scholarly journals Low-Powered Photodetector Based on Two-Dimensional InS0.3Se0.7/WS2 Heterostructure

2021 ◽  
Vol 13 (12) ◽  
pp. 6883
Author(s):  
Kaiting Zhang ◽  
Jie Chang ◽  
Chaoyang Tan ◽  
Hui Han

Photodetectors based on two-dimensional (2D) materials have great potential applications in the field of new energy, such as fuel cells, solar cells, and other fields. Van der Waals (vdW) heterojunction photodiodes are expected to be one of the promising applications of two-dimensional materials due to the photoelectric properties without consideration of lattice mismatch. High-efficiency photoelectric sensors based on two-dimensional materials have great significance to reducing the energy consumption of devices. Here, we build a complex vdW heterostructure by combining InS0.3Se0.7 with another suitable 2D material WS2. Few-layer graphite was used as electrodes to enhance the optoelectronic performance of indium monochalcogenides. Evident photocurrent is observed in the InS0.3Se0.7/WS2 vdW heterostructure device arising from the formed p–n junction at the interface. The uniformity and photoresponse of the InS0.3Se0.7/WS2 vdW heterostructure has been further investigated by the photocurrent mapping. It shows that the entire photovoltaic current was originated from the InS0.3Se0.7/WS2 vdW heterojunction by scanning photocurrent microscope images. Furthermore, the response speed is enhanced at small bias voltage. The transient photoresponse can be well reproduced in almost 100 cycles, indicating the good repeatable optoelectronic performance. Our study indicates that the as-prepared InS0.3Se0.7/WS2 vdW heterostructures are attractive building blocks for photodetectors application. Our findings will open up a new way to further develop high-performance, low-power, and energy-efficient photodetectors based on indium monochalcogenides.

Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16805-16811 ◽  
Author(s):  
Shiwei Cao ◽  
Yanhui Xing ◽  
Jun Han ◽  
Xin Luo ◽  
Wenxing Lv ◽  
...  

The van der Waals (vdW) heterostructure, made up of two dissimilar two-dimensional materials held together by van der Waals interactions, has excellent electronic and optoelectronic properties as it provides a superior interface quality without the lattice mismatch problem.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2022 ◽  
Author(s):  
Ye Ming Qing ◽  
Yongze Ren ◽  
Dangyuan Lei ◽  
Hui Feng Ma ◽  
Tie Jun Cui

Abstract Strong interaction between electromagnetic radiation and matter leads to the formation of hybrid light-matter states, making the absorption and emission behavior different from those of the uncoupled states. Strong coupling effect results in the famous Rabi splitting and the emergence of new polaritonic eigenmodes, exhibiting spectral anticrossing behavior and unique energy-transfer properties. In recent years, there has been a rapidly increasing number of works focusing on strong coupling between nanostructures and two-dimensional materials (2DMs), because of the exceptional properties and applications they demonstrate. Here, we review the significant recent advances and important developments of strong light-matter interactions in 2DMs-based nanostructures. We adopt the coupled oscillator model to describe the strong coupling and give an overview of various hybrid nanostructures to realize this regime, including graphene-based nanostructures, black phosphorus-based nanostructures, transition-metal dichalcogenides-based nanostructures, etc. In addition, we discuss potential applications that can benefit from these effects and conclude our review with a perspective on the future of this rapidly emerging field.


Author(s):  
Guokeng Liu ◽  
Chunyang Jin ◽  
Binlai Hu ◽  
Lihua Zhang ◽  
Guozheng Zeng ◽  
...  

The remarkable properties of layered semiconductor nanosheets (LSNs), such as scalable production, bandgap tunability and mechanical flexibility have promoted them as promising building blocks for nanoelectronics and bioelectronics. However, it...


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 761-766 ◽  
Author(s):  
Renfu Zhuo ◽  
Shiyong Zuo ◽  
Weiwei Quan ◽  
De Yan ◽  
Baisong Geng ◽  
...  

We report a facile solvothermal method to synthesize hybrid materials SnS/RGO which are promising candidates for potential applications in photodetectors.


2020 ◽  
Vol 10 (16) ◽  
pp. 5716
Author(s):  
Ziheng Zhang ◽  
Tong Li ◽  
Xiaofei Jiao ◽  
Guofeng Song ◽  
Yun Xu

The optical vortex (OV) has drawn considerable attention owing to its tremendous advanced applications, such as optical communication, quantum entanglement, and on-chip detectors. However, traditional OV generators suffer from a bulky configuration and limited performance, especially in the ultraviolet range. In this paper, we utilize a large bandgap dielectric material, niobium pentoxide (Nb2O5), to construct ultra-thin and compact transmission-type metasurfaces to generate and detect the OV at a wavelength of 355 nm. The meta-atom, which operates as a miniature half-wave plate and demonstrates a large tolerance to fabrication error, manipulates the phase of an incident right-handed circular polarized wave with high cross-polarized conversion efficiency (around 86.9%). The phase delay of π between the orthogonal electric field component is attributed to the anti-parallel magnetic dipoles induced in the nanobar. Besides, focused vortex generation (topological charge l from 1 to 3) and multichannel detection (l from −2 to 2) are demonstrated with high efficiency, up to 79.2%. We envision that our devices of high flexibility may have potential applications in high-performance micron-scale integrated ultraviolet nanophotonics and meta-optics.


2020 ◽  
Vol 4 (5) ◽  
pp. 2363-2369 ◽  
Author(s):  
Pushkar Mishra ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Rajeev Ahuja

We have investigated the electronic structure, vibrational and transport properties of boron chalcogenide BX (X = S, Se, Te) materials, which may have potential applications in high-performance thermoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document