Hybrid Numerical-Experimental Model Update Based on Correlation Approach for Turbine Components

Author(s):  
Zeeshan Saeed ◽  
Christian M. Firrone ◽  
Teresa Berruti

Abstract Bladed-disks in turbo-machines experience high cycle fatigue failures due to high vibration amplitudes. Therefore, it is important to accurately predict their dynamic characteristics including the mechanical joints at blade-disk interfaces. Before the experimental identification of these joints, it is of paramount importance to accurately measure the interface degrees-of-freedom (DoF). However, they are largely inaccessible for the measurements. For this reason, expansion techniques can be used in order to update the single components. But the expansion can be affected adversely if the measurements are not properly correlated with the updated model. Therefore, a frequency domain expansion method called System Equivalent Model Mixing (SEMM) is used to expand a limited set of measurements to a larger set of numerical DoF. Different measured models - termed the overlay models - are taken from an impact testing campaign of a blade and a disk and coupled to the numerical model according to the SEMM. The expanded models - termed the hybrid models - are then correlated with the validation channels in a round-robin way by means of Frequency Response Assurance Criteria (FRAC). The global correlations depict whether or not a measurement and the respective expansion is properly correlated. By this approach, the least correlated channels can be done away with from the measurements to have a better updated hybrid model. The method is tested on both the structures (the blade and the disk) and it is successfully shown that removing the uncorrelated channels does improve the quality of the hybrid models.

Author(s):  
Zeeshan Saeed ◽  
Christian Maria Firrone ◽  
Teresa Maria Berruti

Abstract Bladed-disks in turbo-machines experience high cycle fatigue failures due to high vibration amplitudes. Therefore, it is important to accurately predict their dynamic characteristics including the mechanical joints at blade-disk (root joint) or blade-blade (shroud) interfaces. These joints help in dampening the vibration amplitudes. Before the experimental identification of these joints, it is of paramount importance to accurately measure the interface degrees-of-freedom (DoF). However, they are largely inaccessible for the measurements. For this reason, expansion techniques are used in order to update the single components before their coupling. But the expansion can be affected adversely if the measurements are not properly correlated with the updated model or if they have significant errors. Therefore, a frequency domain expansion method called System Equivalent Model Mixing (SEMM) is used to expand a limited set of measurements to a larger set of numerical DoF. Different measured models — termed the overlay models — are taken from an impact testing campaign of a blade and a disk and coupled to the numerical model according to the SEMM. The expanded models — termed the hybrid models — are then correlated with the validation channels in a round-robin way by means of Frequency Response Assurance Criteria (FRAC). The global correlations depict whether or not a measurement and the respective expansion is properly correlated. By this approach, the least correlated channels can be done away with from the measurements to have a better updated hybrid model. The method is tested on both the structures (the blade and the disk) and it is successfully shown that removing the uncorrelated channels does improve the quality of the hybrid models.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Zeeshan Saeed ◽  
Steven W. B. Klaassen ◽  
Christian M. Firrone ◽  
Teresa M. Berruti ◽  
Daniel J. Rixen

Abstract A joint between two components can be seen as a means to transmit dynamic information from one side to the other. To identify the joint, a reverse process called decoupling can be applied. This is not as straightforward as the coupling, especially when the substructures have three-dimensional characteristics, or sensor mounting effects are significant, or the interface degrees-of-freedom (DoF) are inaccessible for response measurement and excitation. Acquiring frequency response functions (FRFs) at the interface DoF, therefore, becomes challenging. Consequently, one has to consider hybrid or expansion methods that can expand the observed dynamics on accessible DoF to inaccessible DoF. In this work, we attempt to identify the joint dynamics using the system equivalent model mixing (SEMM) decoupling method with a virtual point description of the interface. Measurements are made only at the internal DoF of the uncoupled substructures and also of the coupled structure assuming that the joint dynamics are observable in the assembled state. Expanding them to the interface DoF and performing coupling and decoupling operations iteratively, the joint is identified. The substructures under consideration are a disk and blade—an academic test geometry that has a total of 18 blades but only one blade-to-disk joint is considered in this investigation. The joint is a typical dove-tail assembly. The method is shown to identify the joint without any direct interface DoF measurement.


Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Chaya Stern ◽  
mudong feng ◽  
Lee-Ping Wang

<div>The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.</div><div>Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.</div><div>To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.</div><div>However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.</div><div>In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.</div><div>The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.</div><div>The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</div>


2012 ◽  
Vol 6 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Michael R Dawson ◽  
Farbod Fahimi ◽  
Jason P Carey

The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohammed Obaid ◽  
Qianwei Zhang ◽  
Scott J. Adams ◽  
Reza Fotouhi ◽  
Haron Obaid

Abstract Background Telesonography systems have been developed to overcome barriers to accessing diagnostic ultrasound for patients in rural and remote communities. However, most previous telesonography systems have been designed for performing only abdominal and obstetrical exams. In this paper, we describe the development and assessment of a musculoskeletal (MSK) telesonography system. Methods We developed a 4-degrees-of-freedom (DOF) robot to manipulate an ultrasound probe. The robot was remotely controlled by a radiologist operating a joystick at the master site. The telesonography system was used to scan participants’ forearms, and all participants were conventionally scanned for comparison. Participants and radiologists were surveyed regarding their experience. Images from both scanning methods were independently assessed by an MSK radiologist. Results All ten ultrasound exams were successfully performed using our developed MSK telesonography system, with no significant delay in movement. The duration (mean ± standard deviation) of telerobotic and conventional exams was 4.6 ± 0.9 and 1.4 ± 0.5 min, respectively (p = 0.039). An MSK radiologist rated quality of real-time ultrasound images transmitted over an internet connection as “very good” for all telesonography exams, and participants rated communication with the radiologist as “very good” or “good” for all exams. Visualisation of anatomic structures was similar between telerobotic and conventional methods, with no statistically significant differences. Conclusions The MSK telesonography system developed in this study is feasible for performing soft tissue ultrasound exams. The advancement of this system may allow MSK ultrasound exams to be performed over long distances, increasing access to ultrasound for patients in rural and remote communities.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yuta Ito ◽  
Hideo Matsufuru ◽  
Yusuke Namekawa ◽  
Jun Nishimura ◽  
Shinji Shimasaki ◽  
...  

Abstract We demonstrate that the complex Langevin method (CLM) enables calculations in QCD at finite density in a parameter regime in which conventional methods, such as the density of states method and the Taylor expansion method, are not applicable due to the severe sign problem. Here we use the plaquette gauge action with β = 5.7 and four-flavor staggered fermions with degenerate quark mass ma = 0.01 and nonzero quark chemical potential μ. We confirm that a sufficient condition for correct convergence is satisfied for μ/T = 5.2 − 7.2 on a 83 × 16 lattice and μ/T = 1.6 − 9.6 on a 163 × 32 lattice. In particular, the expectation value of the quark number is found to have a plateau with respect to μ with the height of 24 for both lattices. This plateau can be understood from the Fermi distribution of quarks, and its height coincides with the degrees of freedom of a single quark with zero momentum, which is 3 (color) × 4 (flavor) × 2 (spin) = 24. Our results may be viewed as the first step towards the formation of the Fermi sphere, which plays a crucial role in color superconductivity conjectured from effective theories.


Author(s):  
Pankaj SHARMA ◽  
Vinod KUMAR

Passenger comfort, quality of ride, and handling have broughta lot of attention and concern toautomotive design engineers. These 2 parameters must have optimum balance as they have an inverse effect on each other. Researchers have proposed several approaches and techniques like PID control, fuzzy approach, GA, techniques with inspiration from nature and hybrid techniques to attain the same. A new controller based on the learning behavior of the human brain has been used for the control of semi-active suspension in this study. The controller is known as the Brain Emotional Learning-Based Intelligent Controller (BELBIC). A one-fourth model of car along with the driver model having 6 degrees of freedom (DOF) wasmodeled and simulated. The objective of the studywasto analyze the performance of the proposed controller for improving the dynamic response of the vehicle model coupled with complex biodynamic models of the human body as a passenger, making the whole dynamic system very complex to control. The performance wasanalyzed based on percentage reduction in the overshoot of the vehicle’s sprung mass as well as different human body parts when subjected to road disturbances. The proposed controller performance wascompared with the PID controller, widely used in semi-active suspension. The simulation results obtained for BELBIC controlled system for circular road bump showed that the overshoot of passenger head and body wasreduced by 18.84 and 18.82 %, respectively and reduction for buttock and leg displacement was18.87 %. The vehicle’s seat and sprung mass displacement displayedan improvement of 18.90 and 18.51 %. The overshoot of passenger's head and body displacement wasimproved by 19.79and 19.62 %,respectively, whereas improvement for buttock & leg, vehicle’s seat, and sprung mass displacement were19.81, 20.00, and 20.49 % against trapezoidal speed bump. The PID controlled suspension disclosed an improvement of 8.74, 8.53, 8.75, 11.11, 14.75 % against circular bump and 10.72, 10.33, 10.73, 11.11 and 11.75 % against trapezoidal bump for overshoot reduction of passenger head, body, buttock & leg, vehicle’s seat and sprung mass displacement, respectively. The proposed BELBIC controlled semi-active suspension outperformed the widely used PID controlled semi-active suspension and indicated asignificant improvement in the ride quality of the vehicle.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 21
Author(s):  
Bruno Lourenço ◽  
Vitorino Neto ◽  
Rafhael de Andrade

The Hands exert a vital role in the simplest to most complex daily tasks. Losing the ability to make hand movements, which is usually caused by spinal cord injury or stroke, dramatically impacts the quality of life. In order to counteract this problem, several assisting devices have been proposed, but they still present several usage limitations. The marketable orthoses are generally either the static type or over-expensive active orthosis that cannot perform the same degrees of freedom (DoF) that a hand can do. This paper presents a conceptual design of a tendon-driven mechanism for hand’s active orthosis. This study is a part of an effort to develop an effective and low-cost hand’s orthosis for people with hand paralysis. The tendon design proposed was thought to comply with some requisitions such as lightness and low volume, as well as fit with the biomechanical constraints of the hand joints to enable a comfortable use. The mechanism employs small cursors on the phalanges to allow the tendons to run on the dorsal side and by both sides of the fingers, allowing 2 DoF for each finger, and one extra tendon enlarges the hands’ adduction nuances. With this configuration, it is simple enough to execute the flexion and extension movements, which are the most used movements in daily actives, using one single DC actuator for one DoF to reduce manufacturing costs, or with more DC actuators to enable more natural hand coordination. This system of actuation is suitable to create soft exoskeletons for hands easily embedded into 3D printed parts, which could be merged over statics thermoplastic orthosis. The final orthosis design allows dexterous finger movements and force to grasp objects and perform tasks comfortably.


2014 ◽  
Vol 926-930 ◽  
pp. 415-418
Author(s):  
Yong Wan ◽  
Yue Guo ◽  
Jing Gao ◽  
Ming Hui Jia

Crescent scatterers possess the properties of anisotropy and multiple degrees of freedom. With plane-wave expansion method (PWE), the slow light effect with high ngand low dispersion can be achieved by optimizing the structure parameters of photonic crystal waveguide with line defect, such as changing the radius of two circles and center distance. Slow light with low dispersion can be obtained by these methods, which implies that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light with high ng and low dispersion.


Author(s):  
I. А. Sharonov ◽  
◽  
Yu. М. Isaev ◽  
V. I. Kurdyumov ◽  
◽  
...  

The task of improving the quality of agricultural tools by improving the technological processes of their functioning, taking into account the kinematic features of the combined impact of working elements of tools on the soil environment is important from a scientific and technical point of view. To form the required structure and density of the soil layer at the depth of sowing, a hammer perforated tillage roller (HPTR) has been developed. The study aim is to improve the quality of post-sowing compaction and structuring of the soil layer in the seed location zone based on the development of an innovative design of HPTR that combines different effects on the treated environment. The object of research is the kinematic mode of operation of the HPTR, equipped with cylindrical hammers installed at the ends of the rod, which, in turn, are radially and pivotally installed on the axis of the gunFeature of offered HPTR is the excitation of hammer vibrations, which changes the kinematic parameters of the tillage tool as a whole. Lagrange equations of the second kind are used to describe the process of HPTR operation, which is represented as a system of material objects with several degrees of freedom. The conducted studies revealed the periodic nature of changes in the strength of the impact of HPTR on the soil. The obtained equations allow us to determine the features of the HPTR movement at different masses of a hollow perforated cylinder and cylindrical hammers. This is of great importance for increasing the efficiency of soil bolster destruction and creating the soil structure recommended for winter crops sown in the Middle Volga region.


Sign in / Sign up

Export Citation Format

Share Document