Enhancement of Cu Nanoparticles Dispersion in Nanolubricants by Magnetron Sputtering Deposition and Its Influence on the Tribological Behavior

2021 ◽  
Vol 143 (11) ◽  
Author(s):  
M. F. Trajano ◽  
D. F. Franceschini ◽  
Edimilson F. Silva ◽  
M. Assolin Correa ◽  
F. Bohn ◽  
...  

Abstract We investigated the chemical, physical, and tribological properties of nanolubricants consisting of epoxidized sunflower oil with Cu nanoparticles as additive. These latter are produced by magnetron sputtering at distinct current levels in the deposition, to improve the development of nanolubricants by enhancing the nanoparticles dispersion. The nanolubricants are here characterized by Fourier transform infrared spectroscopy, zeta potential, ultraviolet–visible absorbance spectroscopy, small-angle X-ray scattering, and scanning electron microscopy. After all, the tribological properties of the bionanolubricants are investigated using a high-frequency reciprocating rig equipment, scanning electron microscopy, and energy dispersive spectroscopy. Our results disclose the nanolubricants produced using the magnetron sputtering technique have excellent nanoparticle dispersion, as well as good tribological performance.

Author(s):  
Ihab Nabeel Safi ◽  
Basima Mohammed Ali Hussein ◽  
Hikmat J. Aljudy ◽  
Mustafa S. Tukmachi

Abstract Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates: discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.


2014 ◽  
Vol 941-944 ◽  
pp. 280-283
Author(s):  
Xiao Yang Wang ◽  
Hong Qiang Ru

SiC particle-reinforced Cu-Fe based braking materials were fabricated by the P/M hot pressing method. The phase composition, microstructure and the worn surface of the composite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD).The tribological properties were evaluated using a disk-on-disk type laboratory scale dynamometer. Results indicate that the friction coefficient is 0.42 in 6800rpm, 0.7MPa. With the increase of rotation speeds the coefficient of friction and stable rate were decreased.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 825 ◽  
Author(s):  
Sheng Hong ◽  
Yuping Wu ◽  
Bo Wang ◽  
Jinran Lin

The main objective of this study was to develop an efficient coating to increase the wear resistance of cold work die steel at different temperatures. The microstructures of high-velocity oxygen-fuel (HVOF)-sprayed WC-CoCr coatings were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of temperature on the tribological properties of the coatings and the reference Cr12MoV cold work die steel were both investigated by SEM, environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), and a pin-on-disk high-temperature tribometer. The coating exhibited a significantly lower wear rate and superior resistance against sliding wear as compared to the die steel at each test temperature, whereas no major differences in terms of the variation tendency of the friction coefficient as a function of temperature were observed in both the coatings and the die steels. These can be attributed to the presence of nanocrystalline grains and the fcc-Co phase in the coating. Moreover, the wear mechanisms of the coatings and the die steels were compared and discussed. The coating presented herein provided a competitive approach to improve the sliding wear performance of cold work die steel.


2011 ◽  
Vol 189-193 ◽  
pp. 129-136
Author(s):  
Xiao Qiu Zheng ◽  
Shi Kun Xie ◽  
Rong Xi Yi

In order to research the adhesion of sputtering protective coating of Gd. Gd substrates was coated with 1Cr18Ni9Ti by means of DC magnetron sputtering technology. The characteristics of the film were investigated by scanning electron microscopy (SEM), EDS, SPM and the adhesions of film was tested by tension test. The results show that the films of 1Cr18Ni9Ti are distributed by means of islands when the sputtering was initiated and the grains are like thin fiber. After a few minutes, the films are smooth and perfect, the interferences between 1Cr18Ni9Ti and Gd join together strongly, and the largest strength of adhesion is 24.7MPa when the sputtering density is 966 w/cm2 and the sputtering time is 8 minutes.


2010 ◽  
Vol 44 (21) ◽  
pp. 2461-2472 ◽  
Author(s):  
Hui-Juan Zhang ◽  
Zhao-Zhu Zhang ◽  
Fang Guo ◽  
Wei Jiang ◽  
Kun Wang

Oleic acid-modified CuS nanoparticles were chemically synthesized. The tribological properties of surface modified and unmodified CuS nanoparticles as additives in the hybrid polytetrafluoroethylene (PTFE)/Kevlar fabric/phenolic composite were investigated in detail. The experimental results indicated that the incorporation of modified CuS nanoparticles improved the antiwear ability of the fabric/phenolic composite at varied loads and environmental temperatures. The reasons for the enhanced wear properties of the fabric/phenolic composite filled with surface-modified CuS nanoparticles were discussed based on the results of scanning electron microscopy and Fourier transform infrared spectroscopy.


2013 ◽  
Vol 420 ◽  
pp. 123-128
Author(s):  
Chun Fu Hong ◽  
Jian Zhong Wang ◽  
Wei Yan ◽  
Ang Ding ◽  
Zhi Yong Liu ◽  
...  

This paper reports two films, Ti/a-C and Ti/a-C:H, prepared on the Ti-6Al-4V alloys by magnetron sputtering in PVD and CVD process, respectively. The morphology and microstructure were characterized by Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Both films show nanosized Ti clusters incorporated into the amorphous carbon matrix. Mechanical properties of the films were investigated by nanoindentation and ball-on-disk tribo-test. Ti/a-C film shows a hardness as high as 40.9 GPa, while that of Ti/a-C:H is 12.2 GPa. Both films show reduced friction and high wear resistance.


Bone ◽  
2006 ◽  
Vol 39 (3) ◽  
pp. 530-541 ◽  
Author(s):  
Mathias Hauge Bünger ◽  
Morten Foss ◽  
Kurt Erlacher ◽  
Mads Bruun Hovgaard ◽  
Jacques Chevallier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document