Effects of Vertical Motions on Roll of Planing Hulls

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Simone Mancini ◽  
Javad A. Mehr ◽  
Stefano Milanesi

Abstract Roll motion of a planing hull can be easily triggered at high speeds, causing a significant change in hydrodynamic pressure pattern, which can threaten the stability of the vessel. Modeling and investigating roll motion of a planing vessel may require a strong coupling between motions in vertical and transverse planes. In the present paper, we have used a mathematical model to analyze the roll of a planing hull by coupling surge, heave, pitch, and roll motions using 2D + T theory to study the effects of roll-induced vertical motions on roll coefficients and response. Mathematically computed forces and moments as well as roll dynamic response of the vessel are seen to be in fair quantitative agreement with experimentally measured values of previously published data. Using the 2D + T method, it has been shown that to model the roll of a planing hull at high speeds, we need to consider the effects of heave, pitch, and surge motions. Through our mathematical modeling, it is found that freedom in vertical motions increases time-dependent roll damping and added mass coefficients, especially at early planing speeds. The results of dynamic response simulations suggest that freedom in the vertical plane can decrease the roll response.

Author(s):  
Parviz Ghadimi ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Pouria Taghikhani

In this article, a mathematical model is presented for simulation of the coupled roll and heave motions of the asymmetric impact of a two-dimensional wedge body. This model is developed based on the added mass theory and momentum variation. To this end, new formulations are introduced which are related to the added mass caused by heave and roll motions of the wedge. These relations are developed by including the asymmetrical effects and roll speed. In addition, by considering the roll speed, a particular method is presented for the time derivative of half-wetted beam of an asymmetric wedge. Furthermore, two equations are derived for the roll and heave motions in which damping terms appear. Validity of the proposed method is verified by comparing the predicted results against available experimental data in two conditions of roll motion and no roll motion. Favorable agreement is observed between the predicted results and experimental data. The pressure and hydrodynamic load are computed, and the differences between the results associated with the considered conditions are explored. Subsequently, the effects of different physical parameters including deadrise angle, initial roll angle, and initial velocity on the dynamic response of a two-dimensional wedge section are investigated. Ultimately, time histories of hydrodynamic coefficients are determined in order to provide a better understanding of the derived equations.


2010 ◽  
Vol 37 (2) ◽  
pp. 262-272 ◽  
Author(s):  
J. Z. Chen ◽  
M. R. Kianoush

This paper presents the results of parametric studies on the seismic response of concrete rectangular liquid storage tanks using the generalized single-degree-of-freedom (SDOF) system. The effects of height of liquid and width of tank on the dynamic response of liquid storage tanks are investigated. The liquid level varies from the empty condition to a full tank. Also, instead of the commonly used ratio of width of tank to liquid height, Lx/HL, the ratio of width of tank to full height of the tank wall, Lx/Hw, is used as a characteristic parameter of tanks to study the effect of tank size on the dynamic response. The trends of added mass of liquid, effective height, and natural frequencies for different sizes of tanks are established. The values of the added mass of liquid due to impulsive hydrodynamic pressure and the effective height in the relationship with the ratios Lx/Hw and HL/Hw are determined and can be used in the seismic design of liquid storage tanks. Since the natural frequencies of liquid-containing structures are within a band of frequencies between that of a full tank and that of an empty tank, the recommended frequency to be used in the design of the tank wall is the frequency that causes the maximum dynamic response .


2021 ◽  
Author(s):  
Jun Zheng Chen

Liquid storage tanks are essential facilities in lifeline and industrial systems. To ensure liquid tightness, serviceability is the prime design concern for these structures. While there have been major studies on the behavior of steel tanks, little attention has been paid to the behavior of rectangular concrete tanks. In this study, the dynamic response of concrete rectangular liquid storage tanks is investigated. In the current design practice, the response of liquid and tank structure is determined based on rigid tank wall and the lumped mass approach. However, the results of analysis show that the flexibility of tank wall increases the hydrodynamic pressures as compared to the rigid wall assumption. Also, recent studies show that the lumped added mass method leads to overly conservative results in terms of base shear and base moment. In addition, in spite of advanced analysis techniques available for dynamic analysis of liquid storage tanks such as finite element method and sequential coupling analysis procedure, there is a need to develop a simplified analysis method for practical applications. In this thesis, a simplified method using the generalized single degree of freedom (SDOF) system is proposed for seismic analysis of concrete rectangular liquid containing structures (LCS). Only the impulsive hydrodynamic pressure is considered. In the proposed method, the consistent mass approach and the effect of flexibility of tank wall on hydrodynamic pressures are considered. Different analytical methods are used to verify the proposed model in this study. The comparison of results based on the current design practice, the analytical-finite element models and full finite element model using ANSYS® shows that the proposed method is fairly accurate which can be used in the structural design of liquid containing structures. Parametric studies on seismic analysis of concrete rectangular LCS using the generalized SDOF system are carried out. Five prescribed vibration shape functions representing the first mode shape of fluid structure interaction system are used to study the effect of flexibility of tank wall and boundary conditions. The effect of flexibility of tank wall, the amplitude of hydrodynamic pressure, the added mass of liquid due to hydrodynamic pressure, the effective heights for liquid containing system and the effect of higher modes on dynamic response of LCS are investigated. In addition, the effect of variable size of tanks and liquid depth are studied. The contribution of higher modes to the dynamic response of LCS is included in the proposed model. A design procedure based on the structural model using the generalized SDOF system is proposed in this study. Design charts and tables for the added mass of liquid due to impulsive hydrodynamic pressure and the corresponding effective heights are presented. The proposed design procedure can be used for engineering design applications.


2021 ◽  
Author(s):  
Jun Zheng Chen

Liquid storage tanks are essential facilities in lifeline and industrial systems. To ensure liquid tightness, serviceability is the prime design concern for these structures. While there have been major studies on the behavior of steel tanks, little attention has been paid to the behavior of rectangular concrete tanks. In this study, the dynamic response of concrete rectangular liquid storage tanks is investigated. In the current design practice, the response of liquid and tank structure is determined based on rigid tank wall and the lumped mass approach. However, the results of analysis show that the flexibility of tank wall increases the hydrodynamic pressures as compared to the rigid wall assumption. Also, recent studies show that the lumped added mass method leads to overly conservative results in terms of base shear and base moment. In addition, in spite of advanced analysis techniques available for dynamic analysis of liquid storage tanks such as finite element method and sequential coupling analysis procedure, there is a need to develop a simplified analysis method for practical applications. In this thesis, a simplified method using the generalized single degree of freedom (SDOF) system is proposed for seismic analysis of concrete rectangular liquid containing structures (LCS). Only the impulsive hydrodynamic pressure is considered. In the proposed method, the consistent mass approach and the effect of flexibility of tank wall on hydrodynamic pressures are considered. Different analytical methods are used to verify the proposed model in this study. The comparison of results based on the current design practice, the analytical-finite element models and full finite element model using ANSYS® shows that the proposed method is fairly accurate which can be used in the structural design of liquid containing structures. Parametric studies on seismic analysis of concrete rectangular LCS using the generalized SDOF system are carried out. Five prescribed vibration shape functions representing the first mode shape of fluid structure interaction system are used to study the effect of flexibility of tank wall and boundary conditions. The effect of flexibility of tank wall, the amplitude of hydrodynamic pressure, the added mass of liquid due to hydrodynamic pressure, the effective heights for liquid containing system and the effect of higher modes on dynamic response of LCS are investigated. In addition, the effect of variable size of tanks and liquid depth are studied. The contribution of higher modes to the dynamic response of LCS is included in the proposed model. A design procedure based on the structural model using the generalized SDOF system is proposed in this study. Design charts and tables for the added mass of liquid due to impulsive hydrodynamic pressure and the corresponding effective heights are presented. The proposed design procedure can be used for engineering design applications.


Author(s):  
Faisal Rahmani ◽  
JK Dutt ◽  
RK Pandey

Conventional oil lubricated journal bearings experience a degradation in the lubrication properties of oil at high temperatures thereby making the use of oil lubricants impractical in a hot working environment. Under these conditions, powder lubricants can be used for the successful operation of the rotor-bearing system. Whirl instability is a serious problem for rotors supported on journal bearings which restrict the system to be operated at high speeds. Surface modifications in the form pocket in the bearing can be used to improve the performance. A sudden change in film thickness caused by the presence of pocket in the bearing will generate hydrodynamic pressure which will support the external load and may influence the stability of the rotor supported on such bearings. The objective of this paper is to explore the stability characteristics of powder lubricated journal bearings employing pockets of different shapes (rectangular, trapezoidal, elliptical, and parabolic). It is observed that though the pocket of all shapes increases the whirl stability of a rotor-shaft system, the rectangular shape is the most effective among all. Therefore, such bearings may be given a rectangular pocket to increase the stability of rotors.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
A.P Willis ◽  
J Peixinho ◽  
R.R Kerswell ◽  
T Mullin

There have been many investigations of the stability of Hagen–Poiseuille flow in the 125 years since Osborne Reynolds' famous experiments on the transition to turbulence in a pipe, and yet the pipe problem remains the focus of attention of much research. Here, we discuss recent results from experimental and numerical investigations obtained in this new century. Progress has been made on three fundamental issues: the threshold amplitude of disturbances required to trigger a transition to turbulence from the laminar state; the threshold Reynolds number flow below which a disturbance decays from turbulence to the laminar state, with quantitative agreement between experimental and numerical results; and understanding the relevance of recently discovered families of unstable travelling wave solutions to transitional and turbulent pipe flow.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xigui Zheng ◽  
Jinbo Hua ◽  
Nong Zhang ◽  
Xiaowei Feng ◽  
Lei Zhang

A limitation in research on bolt anchoring is the unknown relationship between dynamic perturbation and mechanical characteristics. This paper divides dynamic impulse loads into engineering loads and blasting loads and then employs numerical calculation software FLAC3Dto analyze the stability of an anchoring system perturbed by an impulse load. The evolution of the dynamic response of the axial force/shear stress in the anchoring system is thus obtained. It is revealed that the corners and middle of the anchoring system are strongly affected by the dynamic load, and the dynamic response of shear stress is distinctly stronger than that of the axial force in the anchoring system. Additionally, the perturbation of the impulse load reduces stress in the anchored rock mass and induces repeated tension and loosening of the rods in the anchoring system, thus reducing the stability of the anchoring system. The oscillation amplitude of the axial force in the anchored segment is mitigated far more than that in the free segment, demonstrating that extended/full-length anchoring is extremely stable and surpasses simple anchors with free ends.


2010 ◽  
Vol 04 (04) ◽  
pp. 387-400 ◽  
Author(s):  
DEEPANKAR CHOUDHURY ◽  
SYED MOHD AHMAD

The paper presents a methodology for seismic design of rigid watferfront-retaining wall and proposes simple design factors for the sliding stability under seismic condition. Conventional pseudostatic approach has been used for the calculation of the seismic forces, while for the calculation of the hydrodynamic pressure, Westergaard's approach has been used. In addition, the hydrodynamic force has been considered from both the upstream and downstream sides of the waterfront-retaining wall under free water condition of the backfill. Simplified expression for the calculation of the equivalent weight of the wall which would be needed to maintain sliding stability is presented. It has been observed that the presence of water both on the upstream and downstream sides of the wall has serious destabilizing effect on the stability of the wall. It is noticed that as the height of the water inside the backfill increased from 0.00 to a height equal to the height of the wall itself, i.e., the backfill is fully submerged, the weight of the wall needed for the later case is around 3 times more than what would be needed for the former case. Similar observations were also made by varying other parameters like the horizontal and vertical seismic acceleration coefficients, height of the water on the upstream side of the wall, and soil and wall friction angles. The pore pressure ratio and the inclination of the ground, however, did not have significant effect on the results. Due to nonavailability of the results of similar kind in literature, an exact comparison for the present results could not be made. Only partial comparison of the present results is made with an already existing methodology for the dry backfill case only, in which no presence of water has been considered on the other side of the wall. This comparison shows a good agreement with the present results. The proposed pseudostatic design factors for the case of wet backfill with the presence of water on both sides of the wall are claimed to be unique.


1985 ◽  
Vol 107 (4) ◽  
pp. 421-425 ◽  
Author(s):  
G. S. Triantafyllou ◽  
C. Chryssostomidis

The equation of motion of a long slender beam submerged in an infinite fluid moving with constant speed is derived using Hamilton’s principle. The upstream end of the beam is pinned and the downstream end is free to move. The resulting equation of motion is then used to perform the stability analysis of a string, i.e., a beam with negligible bending stiffness. It is found that the string is stable if (a) the external tension at the free end exceeds the value of a U2, where a is the “added mass” of the string and U the fluid speed; or (b) the length-over-diameter ratio exceeds the value 2Cf/π, where Cf is the frictional coefficient of the string.


Sign in / Sign up

Export Citation Format

Share Document