Molecular dynamics simulations of the effect of temperature and strain rate on the plastic deformation of body centred cubic iron nanowires

Author(s):  
Qian Wu ◽  
Yong Wang ◽  
Tao Han ◽  
Hongtao Wang ◽  
Laihui Han ◽  
...  

Abstract The tensile tests of BCC Fe nanowires were simulated through molecular dynamics methods. The temperature and strain rate effects on the mechanical properties as well as the orientation-dependent plastic deformation mechanism were analyzed. For [001]-oriented BCC Fe nanowires, as the temperature increased, the yield stress and Young's modulus decreased. While the yield stress and Young's modulus increased as the strain rate increased. With the increase of temperature, when the temperature was less than 400 K, the twin propagation stress decreased dramatically, and then tended to reach a saturation value at higher temperatures. Under different temperatures and strain rates, the [001]-oriented Fe nanowires all deformed by twinning. The oscillation stage in the stress-strain curve corresponds to the process from the nucleation of the twin to the reorientation of the nanowire. For [110]-oriented Fe nanowires, the plastic deformation is dominated by dislocation slip. The independent events such as the nucleation, slip, and annihilation of dislocations are the causes of the unsteady fluctuations in the stress-strain curve. The Fe nanowires eventually undergo shear damage along the dominant slip surface.

1997 ◽  
Vol 119 (2) ◽  
pp. 81-84 ◽  
Author(s):  
A. Gilat ◽  
K. Krishna

A new configuration for testing thin layers of solder is introduced and employed to study the effects of strain rate and thickness on the mechanical response of eutectic Sn-Pb solder. The solder in the test is loaded under a well defined state of pure shear stress. The stress and deformation in the solder are measured very accurately to produce a reliable stress-strain curve. The results show that both the stress needed for plastic deformation and ductility increase with increasing strain rate.


1998 ◽  
Vol 518 ◽  
Author(s):  
W. N. Sharpe ◽  
K. Turner ◽  
R. L. Edwards

AbstractTechniques and procedures are described for tensile testing of polysilicon specimens that are 1.5 or 3.5 νm thick and have various widths and lengths. The specimens are fixed to the wafer at one end and have a large free end that can be gripped by electrostatic forces. This enables easy handling and testing and permits the deposition of 18 specimens on a one-centimeter square portion of a wafer. The displacement of the free end is monitored, which allows one to extract Young's modulus from the force-displacement record. Some of the wider specimens have two gold lines applied so that strain can be measured interferometrically directly on the specimen to record a stress-strain curve.The specimens were produced at the Microelectronics Center of North Carolina (MCNC). When compared with earlier results of wider MCNC specimens that were 3.5 μm thick, the Young's modulus is smaller and the strength is slightly larger.


2010 ◽  
Vol 638-642 ◽  
pp. 3793-3798
Author(s):  
Wolfgang H. Müller ◽  
Holger Worrack ◽  
Jens Sterthaus

The fabrication of microelectronic and micromechanical devices leads to the use of only very small amounts of matter, which can behave quite differently than the corresponding bulk. Clearly, the materials will age and it is important to gather information on the (changing) material characteristics. In particular, Young’s modulus, yield stress, and hardness are of great interest. Moreover, a complete stress-strain curve is desirable for a detailed material characterization and simulation of a component, e.g., by Finite Elements (FE). However, since the amount of matter is so small and it is the intention to describe its behavior as realistic as possible, miniature tests are used for measuring the mechanical properties. In this paper two miniature tests are presented for this purpose, a mini-uniaxial-tension-test and a nanoindenter experiment. In the tensile test the axial load is prescribed and the corresponding extension of the specimen length is recorded, both of which determines the stress-strain- curve directly. The stress-strain curves are analyzed by assuming a non-linear relationship between stress and strain of the Ramberg-Osgood type and by fitting the corresponding parameters to the experimental data (obtained for various microelectronic solders) by means of a non-linear optimization routine. For a detailed analysis of very local mechanical properties nanoindentation is used, resulting primarily in load vs. indentation-depth data. According to the procedure of Oliver and Pharr this data can be used to obtain hardness and Young’s modulus but not a complete stress-strain curve, at least not directly. In order to obtain such a stress-strain-curve, the nanoindentation experiment is combined with FE and the coefficients involved in the corresponding constitutive equations for stress and strain are obtained by means of the inverse method. The stress-strain curves from nanoindentation and tensile tests are compared for two mate-rials (aluminum and steel). Differences are explained in terms of the locality of the measurement. Finally, material properties at elevated temperature are of particular interest in order to characterize the materials even more completely. We describe the setup for hot stage nanoindentation tests in context with first results for selected materials.


Author(s):  
Kok Ee Tan ◽  
John H. L. Pang

In this paper, the strain-rate dependent mechanical properties and stress-strain curve behavior of Sn3.8Ag0.7Cu (SAC387) solder is presented for a range of strain-rates at room temperature. The apparent elastic modulus, yield stress properties and stress-strain curve equation of the solder material is needed to facilitate finite element modeling work. Tensile tests on dog-bone shaped bulk solder specimens were conducted using a non-contact video extensometer system. Constant strain-rate uni-axial tensile tests were conducted over the strain-rates of 0.001, 0.01, 0.1 and 1 (s−1) at 25°C. The effects of strain-rate on the stress-strain behavior for lead-free Sn3.8Ag0.7Cu solder are presented. The tensile yield stress results were compared to equivalent yield stress values derived from nano-indentation hardness test results. Constitutive models based on the Ramberg-Osgood model and the Cowper-Symond model were fitted for the tensile test results to describe the elastic-plastic behavior of solder deformation behavior.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050001
Author(s):  
Mohammad Reza Hajighasemi ◽  
Majid Safarabadi ◽  
Azadeh Sheidaei ◽  
Mostafa Baghani ◽  
Majid Baniassadi

Smart materials are being utilized in many fields and different external stimuli are used to change specific properties of these materials. In this research, a novel method was developed to design a structure with the desired nonlinear effective Young’s modulus. This method is geometric based where the structures are designed with a gap between them. These structures exhibit nonlinear elastic response. Wide range of structures with desired stress–strain curve can be generated using this approach. First, a unit cell was designed and later used to create a periodic structure. Numerical simulations have been exploited to prove the efficiency of the method. A prototype was manufactured by the Fused Deposition Modeling (FDM) 3D printing method. The compression test was performed on the structure. Both simulations and experimental results proved that the effective Young’s modulus of the structure can be increased up to 142%. Second, the designed unit cell was optimized using Genetic Algorithm (GA) to achieve a cell with desired nonlinear stress–strain curve. This cell was optimized considering five effective geometric parameters to alter the effective Young’s modulus of the cell. Finally, a periodic structure was created by repeating a cell with two different gap’s distances. A structure with a desired stress–strain curve was designed using the same method.


Author(s):  
L-Y Li ◽  
T C K Molyneaux

This paper presents an experimental study of the mechanical properties of brass at high strain rates. The brass tested is the copperzinc alpha-beta and beta two-phase alloy in the cold-worked state. Experiments were conducted using an extended tension split Hopkinson bar apparatus. It is found that, at lower strain rates, the stress-strain curve is smooth, exhibiting no well-defined yield stress, but at higher strain rates the stress-strain curve not only shows a well-defined yield stress but also displays a very pronounced drop in stress at yield. The flow stress is found to increase with increasing strain rate, but the increase is more significant for the yield stress than for the flow stress, showing that the yield stress is more sensitive to the strain rate than the flow stress away from the yield point. Based on the experimental results, empirical strain-rate-dependent constitutive equations are recommended. The suggested constitutive equations provide a reasonable estimate of the strain-rate-sensitive behaviour of materials.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


2011 ◽  
Vol 465 ◽  
pp. 129-132
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

Particulate composites with crosslinked polymer matrix and solid fillers are one of important classes of materials such as construction materials, high-performance engineering materials, sealants, protective organic coatings, dental materials, or solid explosives. The main focus of a present paper is an estimation of the macroscopic Young’s modulus and stress-strain behavior of a particulate composite with polymer matrix. The particulate composite with a crosslinked polymer matrix in a rubbery state filled by an alumina-based mineral filler is investigated by means of the finite element method. A hyperelastic material behavior of the matrix was modeled by the Mooney-Rivlin material model. Numerical models on the base of unit cell were developed. The numerical results obtained were compared with experimental stress-strain curve and value of initial Young’s modulus. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a crosslinked polymer matrix.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


Sign in / Sign up

Export Citation Format

Share Document