Numerical Modeling of the Wave Soldering Process and Experimental Validation

Author(s):  
Violeta Carvalho ◽  
Bruno Arcipreste ◽  
Delfim Soares ◽  
Luís Ribas ◽  
Nelson Rodrigues ◽  
...  

Abstract One of the most important procedures in the electronics industry is the assembly of electronic components onto Printed Circuit Boards (PCB) through the soldering process. Among the various soldering methods available, wave soldering is a very effective technique. In this process, the components are placed onto the PCB, which subsequently, is coated with flux and then passed across a preheat zone. In the end, the assembly is moved by the conveyor and passed over the surface of the molten solder wave in order to create a reliable connection both mechanically and electrically. Although this process has been frequently used, there are soldering defects that remain unsolved and continue to emerge, such as the missing of surface-mount components in the PCB after the soldering process. Aiming to understand if such defects are related to the force exerted by the solder wave in the PCB, in the present work, a numerical and experimental study was performed. For this purpose, a Computational Fluid Dynamic model was developed by using the Fluent® software to describe the interaction between the solder jet and the PCB with the integrated circuits, and the multiphase method, Volume of Fluid, was also applied to track the solder-air interface boundary. The results obtained numerically were validated by using an experimental setup designed and built to this end. In general, the data obtained showed to be in good agreement and it was concluded that the force exerted by the solder wave is approximately 0.02 N.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Violeta Carvalho ◽  
Bruno Arcipreste ◽  
Delfim Soares ◽  
Luís Ribas ◽  
Nelson Rodrigues ◽  
...  

Purpose This study aims to determine the minimum force required to pull out a surface mount component in printed circuit boards (PCBs) during the wave soldering process through both experimental and numerical procedures. Design/methodology/approach An efficient experimental technique was proposed to determine the minimum force required to pull out a surface mount component in PCBs during the wave soldering process. Findings The results showed that the pullout force is approximately 0.4 N. Comparing this value with the simulated force exerted by the solder wave on the component ( ≅ 0.001158 N), it can be concluded that the solder wave does not exert sufficient force to remove a component. Originality/value This study provides a deep understanding of the wave soldering process regarding the component pullout, a critical issue that usually occurs in the microelectronics industry during this soldering process. By applying both accurate experimental and numerical approaches, this study showed that more tests are needed to evaluate the main cause of this problem, as well as new insights were provided into the depositing process of glue dots on PCBs.


2015 ◽  
Vol 27 (1) ◽  
pp. 31-44 ◽  
Author(s):  
M.S. Abdul Aziz ◽  
M.Z. Abdullah ◽  
C.Y. Khor

Purpose – This paper aims to investigate the thermal fluid–structure interactions (FSIs) of printed circuit boards (PCBs) at different component configurations during the wave soldering process and experimental validation. Design/methodology/approach – The thermally induced displacement and stress on the PCB and its components are the foci of this study. Finite volume solver FLUENT and finite element solver ABAQUS, coupled with a mesh-based parallel code coupling interface, were utilized to perform the analysis. A sound card PCB (138 × 85 × 1.5 mm3), consisting of a transistor, diode, capacitor, connector and integrated circuit package, was built and meshed by using computational fluid dynamics pre-processing software. The volume of fluid technique with the second-order upwind scheme was applied to track the molten solder. C language was utilized to write the user-defined functions of the thermal profile. The structural solver analyzed the temperature distribution, displacement and stress of the PCB and its components. The predicted temperature was validated by the experimental results. Findings – Different PCB component configurations resulted in different temperature distributions, thermally induced stresses and displacements to the PCB and its components. Results show that PCB component configurations significantly influence the PCB and yield unfavorable deformation and stress. Practical implications – This study provides PCB designers with a profound understanding of the thermal FSI phenomenon of the process control during wave soldering in the microelectronics industry. Originality/value – This study provides useful guidelines and references by extending the understanding on the thermal FSI behavior of molten solder for PCBs. This study also explores the behaviors and influences of PCB components at different configurations during the wave soldering process.


Author(s):  
Richard Bachoo ◽  
Shurland Balliram ◽  
Jacqueline Bridge

Printed circuit boards (PCBs) are important modules which are incorporated in a wide range of industrial equipment and machinery for the purpose of control or signal manipulation applications. PCBs situated in dynamic environments may be prone to failure from excessive amounts of cyclical stresses arising from harmonic or random vibration sources. The ability to numerically model and predict the dynamic behaviour of PCBs and associated components is therefore a valuable tool for analysts concerned with PCB reliability. In this paper, experimental vibration analysis and the finite element method (FEM) are used to investigate the changes in resonant behaviour of a PCB as the mass, location and stiffness of electronic components vary. Circuit boards that are either sparsely or densely populated with ubiquitous soldered electronic components such as resistors, transistors, capacitors and integrated circuits are considered. The analysis indicates that for boards with a small number of components the natural frequency decreases compared to that of the bare PCB whilst a board with a larger number of soldered components has a corresponding increase. It is also shown that the overall effect of the solder is to reduce the natural frequency of the PCB and to a lesser extent the damping ratio. The study identifies the potential of tailoring the vibration response of a PCB by the appropriate selection and location of its connected components.


2020 ◽  
Author(s):  
Benjamin Monneron ◽  
Michael Schlömann

<p>Electronic waste is a very complex matrix containing valuables and toxic metals. Some very specific metals like Gallium are mainly used for electronic components while also considered a “critical raw element” by the European Commission. Since those metals are used in small quantities, recovery after grinding is impossible. Consequently, those metals must be recovered by separating the components before the milling process. This separation is called dismantling and is usually done pyrometallurgically.  Here we present dismantling by means of bioleaching for the very first time.</p><p>Dismantling by bioleaching was compared with solutions containing either ferric or ferrous iron for 20 days. Although bioleaching resulted in a separation of approximately 70 %, the ferric solution reached 100 %; separation by ferrous iron was negligible.</p><p>After dismantling, the concentration of critical metals increased by a factor of 3, which can be further increased by discriminating between different components e.g. Integrated circuits resistors, capacitors.</p>


Author(s):  
Mahaveer Penna ◽  
Shiva Shankar ◽  
Keshava Murthy ◽  
Jijesh J J

Background: The communication between two Integrated Circuits (IC) of the Printed Circuit Boards (PCB) currently happening through copper traces which allow electric charge to flow. Several limitations being encountered with the copper traces during high data rate communication because of the resistivity factors, which eventually leads to the damage of traces and the system. Methods: The solution for this issue comes with the design of surface wave communication-based waveguide/channel between the IC’s. Surface wave communication over a specified communication fabric/channel performs the propagation of electromagnetic waves effectively even at high frequencies compared to the copper traces using conductor-dielectric combination. This paper deals in revealing suitable conditions through profound analytical models for achieving effective surface wave communication between the pins of integrated circuits. Results: The analysis includes defining the possible wave propagation terms, suitable channel design aspects for PCB application and corresponding analysis for effective communication at frequencies from 50GHz to 500GHz of millimeter range. This study provides the roadmap to explore a deterministic channel/fabric for pin to pin communication between the IC’s as an alternate for the copper traces. Conclusion: In this process, the proposed channel achieves low dispersion compared to the copper traces at millimeter frequency range.


Author(s):  
Alexander Otto ◽  
Eberhard Kaulfersch ◽  
Prashant Kumar Singh ◽  
Claudio Romano ◽  
Marcus Hildebrandt ◽  
...  

Abstract Canary structures being used as early warning indicators represent an important tool for condition and health monitoring of electronic components and systems. In this paper, printed circuit boards with canary structures based on SMD 2512 ceramic chip resistors with reduced solder pad sizes were studied. Focus of these investigations was set on thermo-mechanical and mechanical stresses caused by passive thermal cycling as well as by vibrational loads. For this purpose, experimental methods such as deformation analysis and accelerated ageing tests as well as finite element based methods were applied. In addition, an outlook on the implementation of these canary structures into dual inverter electronic control boards for electrical powertrain applications will be given.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5186
Author(s):  
Szabolcs Fogarasi ◽  
Árpád Imre-Lucaci ◽  
Florica Imre-Lucaci

The study was carried out with the aim to demonstrate the applicability of a combined chemical–electrochemical process for the dismantling of waste printed circuit boards (WPCBs) created from different types of electronic equipment. The concept implies a simple and less polluting process that allows the chemical dismantling of WPCBs with the simultaneous recovery of copper from the leaching solution and the regeneration of the leaching agent. In order to assess the performance of the dismantling process, various tests were performed on different types of WPCBs using the 0.3 M FeCl3 in 0.5 M HCl leaching system. The experimental results show that, through the leaching process, the electronic components (EC) together with other fractions can be efficiently dismounted from the surface of WPCBs, with the parallel electrowinning of copper from the copper rich leaching solution. In addition, the process was scaled up for the dismantling of 100 kg/h WPCBs and modeled and simulated using process flow modelling software ChemCAD in order to assess the impact of all steps and equipment on the technical and environmental performance of the overall process. According to the results, the dismantling of 1 kg of WPCBs requires a total energy of 0.48 kWh, and the process can be performed with an overall low environmental impact based on the obtained general environmental indexes (GEIs) values.


Sign in / Sign up

Export Citation Format

Share Document