An analytical model of a rotating radial cantilever beam considering the coupling between bending, stretching and torsion

2021 ◽  
pp. 1-30
Author(s):  
Xianglin Wu ◽  
Yinghou Jiao ◽  
Zhao-Bo Chen

Abstract In this paper, the mode coupling between bending, stretching and torsional deformations is mainly studied by presenting an analytical model of a rotating cantilever beam with pre-twist angle and arbitrary cross section. Equations of motion of the beam are derived using Hamilton's principle. The Coriolis effect due to the coupling of the bending deformation and stretching deformation, the eccentricity caused by inconsistency between elastic center and centroid, spin softening effect, stress stiffening effect, shear deformation, and rotary inertia are included in the model. Equations of motion are solved by the Rayleigh-Ritz method. The natural frequencies obtained by the proposed analytical modal are in good agreement with those obtained by Finite Element Method (FEM) which proved the accuracy of the analytical model. Finally, the coupling between different mode components is studied in detail based on a quantitative method. The transformation/ conversion between different mode components is revealed, the influence of rotational speed, setting angle and pre-twist angle on this conversion mode is studied. Results show that a specific mode shape is usually composed of multiple mode components. The essence of mode coupling is the coupling between different mode components. The influence of rotational speed, setting angle and pre-twist angle on the mode coupling is that they cause the transformation/ conversion between different mode components.

Author(s):  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
Heung S. Kim

As a compact and durable design concept, energy harvesting skin (EH skin), which consists of piezoelectric patches directly attached onto the surface of a vibrating structure as one embodiment, has been recently proposed. This study aims at developing an electromechanically-coupled analytical model of the EH skin so as to understand its electromechanical behavior and get physical insights about important design considerations. Based on the Kirchhoff plate theory, the Hamilton’s principle is used to derive the differential equations of motion. The Rayleigh-Ritz method is implemented to calculate the natural frequency and the corresponding mode shapes of the EH skin. The electrical circuit equation is derived by substituting the piezoelectric constitutive relation into Gauss’s law. Finally, the steady-state output voltage is obtained by solving the differential equations of motion and electrical circuit equation simultaneously. The results of the analytical model are verified by comparing those of the finite element analysis (FEA) in a hierarchical manner.


Author(s):  
Tianyi Zhang ◽  
Zhuangde Jiang ◽  
Xueyong Wei

Micromechanical resonators have extensive applications but unavoidably exhibit nonlinearities that may degrade the devices’ performances. A good understanding of their nonlinear dynamics is essential to the design of resonant devices. In this paper, we numerically investigated the dynamics of a cantilever beam resonator working at a coupled extensional and flexural vibrational modes with a 2:1 internal resonance. An amplitude saturation behavior is observed in the cantilever beam resonator by controlling the external driving force. The flexural mode shows a complex nonlinear behavior changing from a softening effect to a hardening effect and the extensional mode shows nonlinear behavior due to the nonlinear mode coupling.


1986 ◽  
Vol 108 (1) ◽  
pp. 56-64 ◽  
Author(s):  
R. N. Miles ◽  
P. G. Reinhall

The equations of motion governing the vibration of a beam consisting of two metal layers bonded together with a soft viscoelastic damping adhesive are derived and solved. The adhesive is assumed to undergo both shear and thickness deformations during the vibration of the beam. In previous investigations the thickness deformation has been assumed to have negligible effect on the total damping. However, if the adhesive is very soft, and if at least one of the metal layers is stiff in bending, the thickness deformation in the adhesive can become the dominant damping mechanism. The analysis presented here comprises an extension of the well-known sixth order theory of DiTaranto, Mead, and Markus to include thickness deformation. The equations of motion are derived using Hamilton’s Principle and solutions are obtained by the Ritz method. It is shown that the use of a lightweight constraining layer which is stiff in bending will result in a design which is considerably more damped than a conventional configuration in which the adhesive is undergoing predominant shear deformation.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
D. Zhou ◽  
S. H. Lo

The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.


Author(s):  
Ghasem Ghannad Tehrani ◽  
Chiara Gastaldi ◽  
Teresa Maria Berruti

Abstract Rolling bearings are still widely used in aeroengines. Whenever rotors are modeled, rolling bearing components are typically modeled using springs. In simpler models, this spring is considered to have a constant mean value. However, the rolling bearing stiffness changes with time due to the positions of the balls with respect to the load on the bearing, thus giving rise to an internal excitation known as Parametric Excitation. Due to this parametric excitation, the rotor-bearings system may become unstable for specific combinations of boundary conditions (e.g. rotational speed) and system characteristics (rotor flexibility etc.). Being able to identify these instability regions at a glance is an important tool for the designer, as it allows to discard since the early design stages those configurations which may lead to catastrophic failures. In this paper, a Jeffcott rotor supported and excited by such rolling bearings is used as a demonstrator. In the first step, the expression for the time–varying stiffness of the bearings is analytically derived by applying the Hertzian Contact Theory. Then, the equations of motion of the complete system are provided. In this study, the Harmonic Balance Method (HBM) is used to as an approximate procedure to draw a stability map, thus dividing the input parameter space, i.e. rotational speed and rotor physical characteristics, into stable and unstable regions.


1954 ◽  
Vol 21 (4) ◽  
pp. 365-370
Author(s):  
B. W. Andersen

Abstract Using the method published by Ritz in 1909, natural frequencies and corresponding node lines have been determined for two symmetric and two antisymmetric modes of vibration of isosceles triangular plates clamped at the base and having length-to-base ratios of 1, 2, 4, and 7 and for the two lowest modes of right triangular plates clamped along one leg and having ratios of the length of the free leg to that of the clamped one of 2, 4, and 7. A nonorthogonal co-ordinate system was used which gave constant limits of integration over the area of the triangle. The co-ordinate transformation made it necessary to modify the functions used by Ritz in approximating deflections and to consider cross products in the integration. The integration was done numerically, using tables compiled by Young and Felgar in 1949. To check the accuracy of results, a solution was obtained to the problem of a vibrating cantilever beam of uniform depth and triangular plan view. The results obtained were found to be consistent with those obtained for the plates by using an eight-term series to approximate the deflections of the symmetric plates (isosceles triangles) and a six-term series to approximate the deflections of the unsymmetric plates (right triangles).


1989 ◽  
Vol 111 (4) ◽  
pp. 626-629
Author(s):  
W. Ying ◽  
R. L. Huston

In this paper the dynamic behavior of beam-like mechanism systems is investigated. The elastic beam is modeled by finite rigid segments connected by joint springs and dampers. The equations of motion are derived using Kane’s equations. The nonlinear terms are linearized by first order perturbation about a system balanced configuration state leading to geometric stiffness matrices. A simple numerical example of a rotating cantilever beam is presented.


2008 ◽  
Vol 74 (1) ◽  
pp. 111-118
Author(s):  
FEN-CE CHEN

AbstractThe acceleration of ions by multiple laser pulses and their spontaneously generated electric and magnetic fields is investigated by using an analytical model for the latter. The relativistic equations of motion of test charged particles are solved numerically. It is found that the self-generated axial electric field plays an important role in the acceleration, and the energy of heavy test ions can reach several gigaelectronvolts.


2018 ◽  
Vol 29 (9) ◽  
pp. 2008-2026 ◽  
Author(s):  
Andres E Rivero ◽  
Paul M Weaver ◽  
Jonathan E Cooper ◽  
Benjamin KS Woods

Camber morphing aerofoils have the potential to significantly improve the efficiency of fixed and rotary wing aircraft by providing significant lift control authority to a wing, at a lower drag penalty than traditional plain flaps. A rapid, mesh-independent and two-dimensional analytical model of the fish bone active camber concept is presented. Existing structural models of this concept are one-dimensional and isotropic and therefore unable to capture either material anisotropy or spanwise variations in loading/deformation. The proposed model addresses these shortcomings by being able to analyse composite laminates and solve for static two-dimensional displacement fields. Kirchhoff–Love plate theory, along with the Rayleigh–Ritz method, are used to capture the complex and variable stiffness nature of the fish bone active camber concept in a single system of linear equations. Results show errors between 0.5% and 8% for static deflections under representative uniform pressure loadings and applied actuation moments (except when transverse shear exists), compared to finite element method. The robustness, mesh-independence and analytical nature of this model, combined with a modular, parameter-driven geometry definition, facilitate a fast and automated analysis of a wide range of fish bone active camber concept configurations. This analytical model is therefore a powerful tool for use in trade studies, fluid–structure interaction and design optimisation.


Sign in / Sign up

Export Citation Format

Share Document