Time-Resolved Measurements of the Unsteady Boundary Layer in an Annular Low-Pressure Turbine Configuration with Perturbed Inlet Submitted for Publication

2021 ◽  
pp. 1-26
Author(s):  
Martin Sinkwitz ◽  
Benjamin Winhart ◽  
David Engelmann ◽  
Francesca di Mare

Abstract In this study the unsteady behavior of the boundary layers developing on a LPT stator profile and their effect on secondary flow patterns in a 1.5-stage turbine configuration are investigated under the influence of periodic inflow perturbations. For this the experimental setup has been enhanced by hot-film sensor arrays placed on the stator profiles to provide time-resolved data from within the passage. The inflow is perturbed by periodically passing bars and a modified T106-profile has been considered for the blading. The profile, labeled as T106RUB, was developed for matching the transition and separation characteristics of the original T106 profile at low flow speeds, thus facilitating measurements to be taken in a large-scale test rig with its improved accessibility. The transition phenomena occurring in the profile boundary layers are investigated under both unperturbed and periodically perturbed inflow by means of spectral analysis, the characterization of the wall-stress system and an evaluation of the statistic quantities. In particular, the periodic changes of the suction side boundary layer flow region towards the trailing edge are studied in detail. Furthermore, time-resolved hot-film measurements at different blade height positions facilitate a detailed comparison of the quasi two-dimensional mid-span profile flow and the near end wall profile flow which is subject to influence of secondary flow structures. These information are employed to assess to which extent the additional turbulence originating from the wakes affects the blade boundary layers and thus the secondary flow structures.

Author(s):  
Martin Sinkwitz ◽  
Benjamin Winhart ◽  
David Engelmann ◽  
Francesca di Mare

Abstract In this study the unsteady behavior of the boundary layers developing on a LPT stator profile and their effect on secondary flow patterns in a 1.5-stage turbine configuration are investigated under the influence of periodic inflow perturbations. The experimental setup previously employed to analyze the unsteady secondary flow in the stator wake has been enhanced by hotfilm sensor arrays placed on the stator profiles at different blade height positions to provide time-resolved data from within the passage. The turbine inflow is perturbed by periodically passing circular bars and a modified T106-profile has been considered for the blading. The modified profile, labeled as T106RUB, was developed for matching the transition and separation characteristics of the original T106 profile at low flow speeds, thus facilitating measurements to be taken in a large-scale test rig with its improved accessibility. The transition phenomena occurring in the profile boundary layers are investigated under both unperturbed and periodically perturbed inflow by means of spectral analysis, the semi-quantitative characterization of the wall-stress system and an evaluation of the statistic quantities. In particular, the periodic changes of the suction side boundary layer flow region towards the trailing edge are studied in detail. Furthermore, time-resolved hot-film measurements at different blade height positions facilitate a detailed comparison of the quasi two-dimensional mid-span profile flow and the near end wall profile flow which is subject to influence of secondary flow structures. These information are employed to assess to which extent the additional turbulence originating from the wakes affects the blade boundary layers and thus the secondary flow structures. Furthermore, the role of the perturbation frequency on the coupled system of boundary layers and secondary flow structures is evaluated.


Author(s):  
X. Liu ◽  
W. Rodi

A detailed experimental study has been conducted on the wake-induced unsteady flow and heat transfer in a linear turbine cascade. The unsteady wakes with passing frequencies in the range zero to 240 Hz were generated by moving cylinders on a squirrel cage device. The velocity fields in the blade-to-blade flow and in the boundary layers were measured with hot-wire anemometers, the surface pressures with a pressure transducer and the heat transfer coefficients with a glue-on hot film. The results were obtained in ensemble-averaged form so that periodic unsteady processes can be studied. Of particular interest was the transition of the boundary layer. The boundary layer remained laminar on the pressure side in all cases and in the case without wakes also on the suction side. On the latter, the wakes generated by the moving cylinders caused transition, and the beginning of transition moves forward as the cylinder-passing frequency increases. Unlike in the flat-plate study of Liu and Rodi (1991a) the instantaneous boundary layer state does not respond to the passing wakes and therefore does not vary with time. The heat transfer increases under increasing cylinder-passing frequency even in the regions with laminar boundary layers due to the increased background turbulence.


2013 ◽  
Vol 715 ◽  
pp. 477-498 ◽  
Author(s):  
Zambri Harun ◽  
Jason P. Monty ◽  
Romain Mathis ◽  
Ivan Marusic

AbstractResearch into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

The flow and heat transfer in ribbed coolant passages of aspect ratios (AR) of 1:1, 4:1, and 1:4 are numerically studied through the solution of the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The URANS procedure can resolve large-scale bulk unsteadiness, and utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The computations are carried out for a fixed Reynolds number of 25000 and density ratio of 0.13 while the Rotation number has been varied between 0.12–0.50. The average duct heat transfer is the highest for the 4:1 AR case. For this case, the secondary flow structures consist of multiple roll cells that direct flow both to the trailing and leading surfaces. The 1:4 AR duct shows flow reversal along the leading surface at high rotation numbers with multiple rolls in the secondary flow structures near the leading wall. For this AR, the potential for conduction-limited heat transfer along the leading surface is identified. At high rotation number, both the 1:1 and 4:1 AR cases exhibit loss of axial periodicity over one inter-rib module. The friction factor reveals an increase with the rotation number for all aspect ratio ducts, and shows a sudden jump in its value at a critical rotation number because of either loss of spatial periodicity or the onset of backflow.


2012 ◽  
Vol 697 ◽  
pp. 336-366 ◽  
Author(s):  
Sebastian Wagner ◽  
Olga Shishkina ◽  
Claus Wagner

AbstractWe analyse the wind and boundary layer properties of turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio one for Prandtl number $\mathit{Pr}= 0. 786$ and Rayleigh numbers ($\mathit{Ra}$) up to $1{0}^{9} $ by means of highly resolved direct numerical simulations. We identify time periods in which the orientation of the large-scale circulation (LSC) is nearly constant in order to perform a statistical analysis of the LSC. The analysis is then reduced to two dimensions by considering only the plane of the LSC. Within this plane the LSC is treated as a wind with thermal and viscous boundary layers developing close to the horizontal plates. Special focus is on the spatial development of the wind magnitude and the boundary layer thicknesses along the bottom plate. A method for the local analysis of the instantaneous boundary layer thicknesses is introduced which shows a dramatically changing wind magnitude along the wind path. Furthermore a linear increase of the viscous and thermal boundary layer thickness along the wind direction is observed for all $\mathit{Ra}$ considered while their ratio is spatially constant but depends weakly on $\mathit{Ra}$. A possible explanation is a strong spatial variation of the wind magnitude and fluctuations in the boundary layer region.


Author(s):  
J. Stephen Hu ◽  
Jian Sheng ◽  
Michele Guala ◽  
Leonardo Chamorro

The focus of this paper is to characterize the upstream wake of a three bladed Horizontal Axis Wind Turbine (HAWT) and its interaction with the native structures within a turbulent boundary layer (TBL). The overarching question is the most prevailing length and time scales of coherent structures that would interact with a HAWT and how they would be affected. The implications include wall flow and structure interaction and flow induced noise generation in large scale turbo machineries. The experiments are performed on a turbine that has a 0.128 m rotor diameter, a hub height of 0.104 m and a tip speed ratio of 4. The HAWT model is placed in a large scale wind tunnel in a boundary layer with a thickness δ of ∼0.6 m. The boundary layer is generated by a 60 mm picket fence trip and developed over a smooth wall under thermally neutral conditions. Measurements are performed under ReD of 4 × 105 and 6 × 105. Both turbine geometries and flow conditions are scaled from operating conditions in the field. High speed Particle Image Velocimetry (PIV), turbine voltage output, and angular velocity measurements are conducted simultaneously, by which one could relate the upwind flow structures with the power output of the turbine. High speed PIV offer details in spatial and temporal characteristics of the impinging flow structures, whilst the voltage anemometer and tachometer provide instantaneous measurement of angular velocity of the turbine. PIV measurements are taken at a rate of 1500 image pairs per second with a 100 μs delay between laser pulses. Each sample area is 0.15 × 0.15 cm. Two locations up to two rotor diameters upwind are measured. Instantaneous voltage is taken at a sampling rate of 30 kHz and a sampling time of 60s to ensure sufficient temporal resolution and coverage. Ongoing analysis using conditional averaging based on extreme power output events will provide insights in assessing a HAWT performance in unsteady flow conditions.


Author(s):  
G Persico ◽  
P Gaetani ◽  
V Dossena ◽  
G D'Ippolito ◽  
C Osnaghi

The present article proposes a novel methodology to evaluate secondary flows generated by the annulus boundary layers in complex cascades. Unlike two-dimensional (2D) linear cascades, where the reference flow is commonly defined as that measured at midspan, the problem of the reference flow definition for annular or complex 3D linear cascades does not have a general solution up to the present time. The proposed approach supports secondary flow analysis whenever exit streamwise vorticity produced by inlet endwall boundary layers is of interest. The idea is to compute the reference flow by applying slip boundary conditions at the endwalls in a viscous 3D numerical simulation, in which uniform total pressure is prescribed at the inlet. Thus the reference flow keeps the 3D nature of the actual flow except for the contribution of the endwall boundary layer vorticity. The resulting secondary field is then derived by projecting the 3D flow field (obtained from both an experiment and a fully viscous simulation) along the local reference flow direction; this approach can be proficiently applied to any complex geometry. This method allows the representation of secondary velocity vectors with a better estimation of the vortex extension, since it offers the opportunity to visualize also the region of the vortices, which can be approximated as a potential type. Furthermore, a proficient evaluation of the secondary vorticity and deviation angle effectively induced by the annulus boundary layer is possible. The approach was preliminarily verified against experimental data in linear cascades characterized by cylindrical blades, not reported for the sake of brevity, showing a very good agreement with the standard methodology based only on the experimental midspan flow field. This article presents secondary flows obtained by the application of the proposed methodology on two annular cascades with cylindrical and 3D-designed blades, stressing the differences with other definitions. Both numerical and experimental results are considered.


Sign in / Sign up

Export Citation Format

Share Document