scholarly journals Recent Developments in Air Pumps for Thermal Management of Electronics

Author(s):  
Tsrong-Yi Wen ◽  
Jia-Cheng Ye

Abstract For electronics, poor thermal management could cause severe mechanical and electrical failures. Forced convective air cooling, i.e., flowing air over a hot surface, is one of the most efficient and economical solutions to manage thermal issues of electronics. Air pump is used to initiate and sustain airflow required in forced convection. This paper reviews both the mechanical and the nonmechanical air pumps that have been using widely in current electronics or have a great potential in future electronics. The mechanical pumps include axial fans, blowers, beam fans, and diaphragm pumps, while the nonmechanical pump specifically focuses on electrohydrodynamic pumps. This paper presents the working principle first and then the recent developments, including the pump itself (design, characteristics, etc.) and the applications in thermal management (placement, integration, etc.). In the end, this paper conducts the strength analysis (flow rate, pressure, noise, flexibility, and reliability) among the reviewed five types of air pumps.

Author(s):  
Tunc Icoz ◽  
Mehmet Arik ◽  
John T. Dardis

Thermal management of electronics is a critical part of maintaining high efficiency and reliability. Adequate cooling must be balanced with weight and volumetric requirements, especially for passive air-cooling solutions in electronics applications where space and weight are at a premium. It should be noted that there are systems where thermal solution takes more than 95% of the total weight of the system. Therefore, it is necessary to investigate and utilize advanced materials to design low weight and compact systems. Many of the advanced materials have anisotropic thermal properties and their performances depend strongly on taking advantage of superior properties in the desired directions. Therefore, control of thermal conductivity plays an important role in utilization of such materials for cooling applications. Because of the complexity introduced by anisotropic properties, thermal performances of advanced materials are yet to be fully understood. Present study is an experimental and computational study on characterization of thermal performances of advanced materials for heat sink applications. Numerical simulations and experiments are performed to characterize thermal performances of four different materials. An estimated weight savings in excess of 75% with lightweight materials are observed compared to the traditionally used heat sinks.


2018 ◽  
Author(s):  
Akhil Jaiswal ◽  
A. R. Anand ◽  
Simhachal Rao Chikkala ◽  
Venkata Raghavendra

2021 ◽  
Vol 198 ◽  
pp. 117503 ◽  
Author(s):  
Mohsen Akbarzadeh ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Lu Jin ◽  
Hamidreza Behi ◽  
...  

Author(s):  
Keun Ryu ◽  
Luis San Andrés

Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient and costly to operate but could also cause bearing seizure and premature system destruction. This paper presents comprehensive measurements of bearing temperatures and shaft dynamics conducted on a hollow rotor supported on two first generation GFBs. The hollow rotor (1.36 kg, 36.51 mm OD and 17.9 mm ID) is heated from inside to reach an outer surface temperature of 120°C. Experiments are conducted with rotor speeds to 30 krpm and with forced streams of air cooling the bearings and rotor. Air pressurization in an enclosure at the rotor mid span forces cooling air through the test GFBs. The cooling effect of the forced external flows is most distinct when the rotor is hottest and operating at the highest speed. The temperature drop per unit cooling flow rate significantly decreases as the cooling flow rate increases. Further measurements at thermal steady state conditions and at constant rotor speeds show that the cooling flows do not affect the amplitude and frequency contents of the rotor motions. Other tests while the rotor decelerates from 30 krpm to rest show that the test system (rigid-mode) critical speeds and modal damping ratio remain nearly invariant for operation with increasing rotor temperatures and with increasing cooling flow rates. Computational model predictions reproduce the test data with accuracy. The work adds to the body of knowledge on GFB performance and operation and provides empirically derived guidance for successful rotor-GFB system integration.


Author(s):  
Jing Liu ◽  
Yue-Guang Deng ◽  
Zhong-Shan Deng

Efficient cooling of a high performance computer chip has been an extremely important however becoming more and more tough issue. The recently invented liquid metal cooling method is expected to pave the way for high flux heat dissipation which is hard to tackle otherwise by many existing conventional cooling strategies. However, as a new thermal management method, its application also raised quite a few challenging fundamental and practical issues for solving. To illustrate the development of the new technology, this talk is dedicated to present an overview on the latest advancements made in the author’s lab in developing the new generation chip cooling device based on the liquid metal coolant with melting point around room temperature. The designing and optimization of the cooling device and component will be discussed. Several major barriers to prevent the new method from practical application such as erosion between liquid metal coolant and its substrate material will be outlined with good solutions clarified. Performance comparison between the new chip cooling method with commercially available products with highest quality such as air cooling, water cooling and heat pipe cooling devices were evaluated. Typical examples of using liquid metal cooling for the thermal management of a real PC or even super computer will be demonstrated. Further, miniaturizations on the prototype device by extending it as a MEMS cooling device or mini/micro channel liquid metal cooling device will also be explained. Along with the development of the hardware, some fundamental heat transfer issues in characterizing the liquid metal cooling device will be discussed through numerical or analytical model. Future challenging issues in pushing the new technology into large scale practices will be raised. From all the outputs obtained so far, it can be clearly seen that the new cooling strategy will find very promising and significant applications in a wide variety of engineering situations whenever thermal managements or heat transport are needed.


Author(s):  
Tianyu Yang ◽  
Thomas Foulkes ◽  
Beomjin Kwon ◽  
Jin Gu Kang ◽  
Paul V. Braun ◽  
...  

2018 ◽  
Vol 7 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Pooja Bhambhani

Quantum dot-sensitized solar cell (QDSSC) has an analogous structure and working principle to the dye sensitizer solar cell (DSSC). It has drawn great attention due to its unique features, like multiple exciton generation (MEG), simple fabrication and low cost. The power conversion efficiency (PCE) of QDSSC is lower than that of DSSC. To increase the PCE of QDSSC, it is required to develop new types of working electrodes, sensitizers, counter electrodes and electrolytes. This review highlights recent developments in QDSSCs and their key components, including the photoanode, sensitizer, electrolyte and counter electrode.


Sign in / Sign up

Export Citation Format

Share Document