scholarly journals Continuous drive friction welding of AISI 8630 low-alloy steel: experimental investigations on microstructure evolution and mechanical properties

Author(s):  
Amborish Banerjee ◽  
Michail Ntovas ◽  
Laurie Da Silva ◽  
Ryan O'Neill ◽  
Salaheddin Rahimi

Abstract Continuous drive friction welding (CDW) is a state-of-the-art solid-state welding technology for joining metallic components used in aerospace, oil and gas and power generation industries. This study summarises the results of mechanical and microstructural investigations on a modified AISI-8630 steel subjected to CDW. The effects of welding process parameters, including rotational speed, friction and forge forces, during CDW were explored to determine an optimum welding condition. The mechanical properties of the weld, and microstructural characteristics across different regions of the weld were measured and examined. The microstructure characterisation results suggest that the weld zone (WZ) experiences temperatures above Ac3 and the thermo-mechanically affected zone (TMAZ) experiences temperatures between Ac1 and Ac3 of the material. Investigations with electron backscatter diffraction (EBSD) demonstrated the occurrence of strain-induced dynamic recrystallisation in the weld. The weld demonstrated higher yield and ultimate tensile strengths at the expense of ductility and hardening capacity compared to the base metal (BM). The strain hardening profiles of the welds exhibited a dual-slopes characteristic, an indication of different levels of plastic deformation experienced by the constituent phases (i.e., martensite, bainite and ferrite) present in the microstructure. The maximum strength-to-ductility combination and static toughness values were obtained for the weld produced under the highest rotational speed, maximum friction force and an intermediate forge force of 1200-1400 rpm, 37.5-42.5 kN and 60-65 kN, respectively.

2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a friction welding process was adopted to join dissimilar alloys of Ti-Al-4V to Nitinol. The effect of friction welding on the evolution of welded macro and microstructures and their hardnesses and tensile properties were studied and discussed in detail. The macrostructure of Ti-6Al-4V and Nitinol dissimilar joints revealed flash formation on the Ti-6Al-4V side due to a reduction in flow stress at high temperatures during friction welding. The optical microstructures revealed fine grains near the Ti-6Al-4V interface due to dynamic recrystallization and strain hardening effects. In contrast, the area nearer to the nitinol interface did not show any grain refinement. This study reveals that the formation of an intermetallic compound (Ti2Ni) at the weld interface resulted in poor ultimate tensile strength (UTS) and elongation values. All tensile specimens failed at the weld interface due to the formation of intermetallic compounds.


Author(s):  
Mohammad Afzali ◽  
Vahid Asghari

Abstract the purpose of this project was to introduce a way to improve the mechanical properties of welded dissimilar material, which gives benefits such as affordable, high speed, and suitable bond property. In this experimental project, the friction welding method has been applied, including combining parameters, such as numerical control (NC) machine including two different speeds, and three different cross-sections; including flat, cone, and step surfaces. When the welding process was done, samples were implemented and prepared via bending test of materials. the results have shown that, besides increasing the machining velocity, the surface friction increased, and so did the temperature. By considering the stated experimental facts, the melting temperature of composite materials has increased. This provides the possibility of having a better blend of nanomaterial compared to the base melted plastics. Thus, the result showed that, besides increasing the weight percentage (wt %) of Nanomaterials contents and machining velocity, the mechanical properties have increased on the welded area for all three types of samples. This enhancement is due to the better melting process on the welded area with attendance of various Nanoparticles contents. Also, the results showed that the shape of the welding area could play a significant role, and the results also change drastically where the shape changes. Optimum shape in the welding process has been dedicated to the step surface. The temperature causes the melting process, which is a significant factor in the friction welding process.


Author(s):  
M Ghaffarpour ◽  
D Akbari ◽  
H Moslemi Naeini

In this paper, the effects of the joint type on the driven-out bead of the roll-formed pipes, welded by high-frequency induction welding process are studied. The main goal is to predict and reduce the volume of the bead driven out in the weld seam. Moreover, it aims to move the semi-solid bead during welding to the outer diameter of the pipe. This study has two prior aims: to produce a defect-free joint and to improve the mechanical and metallurgical properties. In order to optimize the weld joint, various joint types have been investigated by experimental tests and simulation. Lastly, destructive tests were used to determine if the desired mechanical properties of the weld joint were obtained. The metallurgical properties and the derivation of the semi-solid material in the weld zone have both been investigated in terms of microstructure. According to the results, the proper joint type improves the mechanical properties by 5% and reduces the volume of the weld bead about 45%.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ho Thi My Nu ◽  
Truyen The Le ◽  
Luu Phuong Minh ◽  
Nguyen Huu Loc

The selection of high-strength titanium alloys has an important role in increasing the performance of aerospace structures. Fabricated structures have a specific role in reducing the cost of these structures. However, conventional fusion welding of high-strength titanium alloys is generally conducive to poor mechanical properties. Friction welding is a potential method for intensifying the mechanical properties of suitable geometry components. In this paper, the rotary friction welding (RFW) method is used to study the feasibility of producing similar metal joints of high-strength titanium alloys. To predict the upset and temperature and identify the safe and suitable range of parameters, a thermomechanical model was developed. The upset predicted by the finite element simulations was compared with the upset obtained by the experimental results. The numerical results are consistent with the experimental results. Particularly, high upset rates due to generated power density and forging pressure overload that occurred during the welding process were investigated. The performances of the welded joints are evaluated by conducting microstructure studies and Vickers hardness at the joints. The titanium rotary friction welds achieve a higher tensile strength than the base material.


Author(s):  
Jong-Hyun Baek ◽  
Woo-Sik Kim

A branched pipe joint has been employed to execute the pressure control, condition check, purgation, and distribution of the gas in the natural gas facilities. Installation of branch pipes is generally done through the welding work, and as a welding process, the weldolet and the sockolet are used. During the maintenance working of in-service natural gas pipeline, there was gas leakage in sockolet weldment. The causes of incident were investigated with various tests. We found the wrong pipe material, the weld defect and the non-destructive test limitation of fillet weldment as the reasons of gas leakage. As the follow-up measures, it was done to assess the soundness depending upon the configuration of the weld zone, a change in the welding process and a change in the pipe diameter by assessing the mechanical properties of the sockolet weld zone and further to assess comparatively the mechanical performance of the sockolet weld zone and that of the weldolet weld zone. In the sockolet weld, the tensile strength showed no difference and the fatigue strength showed a difference depending upon a change in the welding process. In the case that the leg length of the weld zone was made lengthwise in the direction of the branch pipe, the SMAW welding work compare with the GTAW, the sectional area of the weld zone was more increased, and the pipe diameter was more increased, the fatigue strength was increased.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
CK Krishnadasan

Aluminium alloy 6061-T6 is utilized in aerospace industry for developing pressure vessel liner. Cold metal transfer is a promising welding process used in fabricating aluminium structures. The present work is focussed to achieve an optimum welding parameter for joining a 3.5-mm thick pressure vessel and to examine the mechanical properties and metallurgical nature of the weldment. The welded joint was evaluated as defect free using radiography test. The joint efficiency (66.61%) and measured microhardness of weldment (59.78 HV) exhibited promising results. The effect of grain coarsening in the heat affected zone (HAZ) and weld zone is attributed to the thermal gradients during welding. Dissipation of small amounts of strengthening elements Si and Mg during welding leads to reduction in mechanical properties. X-ray diffraction peaks revealed the presence of intermetallic Al–Si and Fe–Si in the weld zone. Fractography examination confirms the ductile type of failure in the fractured surface of the tensile samples.


Sign in / Sign up

Export Citation Format

Share Document