Temperature Measurement of Workpieces in Conventional Surface Grinding

1998 ◽  
Vol 122 (2) ◽  
pp. 297-303 ◽  
Author(s):  
T. Kato ◽  
Hiroshi Fujii

Temperature at various depths from the ground surface in workpiece is measured accurately by using the newly developed PVD film method, in which a thin film deposited on the workpiece is used as a thermal sensor. The influence of workpiece speed, depth of cut and wheel speed on the temperature of the workpiece was investigated under conventional surface grinding with no grinding fluids. The measured results were compared with Takazawa’s approximation based on Jaeger’s heat conduction solution to the moving heat source problem. The maximum temperature rise at the surface and the temperature gradient close to the surface were obtained and correlated with the residual stress induced at the surface. [S1087-1357(00)70302-9]

1999 ◽  
Vol 121 (3) ◽  
pp. 393-398 ◽  
Author(s):  
T. Kato ◽  
H. Fujii

In order to estimate the energy partition to the workpiece in surface grinding, the temperatures at various depths from the ground surface of the workpiece were measured using the PVD (physical vapor deposition) film method developed by the authors. In this method a thin film deposited on the workpiece is used as a thermal sensor. The energy partition for various grinding wheels was estimated with the maximum temperature rise at the surface obtained by extrapolating the temperatures measured at various depths. It was found that the partition changes significantly from 0.3 to 0.8, depending on the combination of the workpiece material and the wheel material in conventional dry surface grinding.


2014 ◽  
Vol 1017 ◽  
pp. 88-91
Author(s):  
Cheng Wei Kang ◽  
Bing Jun Hao ◽  
Han Huang

This study aimed to investigate the effect of grinding conditions, including depth of cut and grinding direction, on the material removal and surface finish of multilayered thin film structures. It was found that the increase in depth of cut improved the material removal rate, but worsened the ground surface finish. The grinding perpendicular to the thin films caused less damage and produced better surface than that parallel to the films. The characteristics of wheel wear were also studied. Grit pull-out and micro-fracture should be attributed to the wheel wear.


2018 ◽  
Author(s):  
Yao Liu ◽  
Beizhi Li ◽  
Yihao Zheng

The SiC ceramic ductile grinding, which can obtain crack-free ground surface, is a challenge in brittle material machining. To understand the brittle material ductile grinding mechanism in the nanoscale, a molecular dynamics (MD) model is built to study the single diamond grit grinding silicon carbide ceramic. Through analyzing the MD simulation process, the grit forces the SiC to deform and form the chip through the plastic deformation and flow. The ground surface has no crack on the surface and damage layer thickness is less than one atom layer under the nanoscale depth of cut, which indicates the nanogrinding can achieve the pure ductile grinding for the SiC ceramic and obtain a crack-free and high-quality ground surface. Grinding force, stress, temperature, and specific energy increase with the wheel speed and depth of cut due to the higher grinding speed and a smaller depth of cut can generate a higher density of defects (vacancies, interstitial atoms, and dislocations) on the workpiece, which can make the silicon carbide ceramic more ductile. The high wheel speed is favorable for the ductile grinding.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 625 ◽  
Author(s):  
Yanjun Lu ◽  
Wang Luo ◽  
Xiaoyu Wu ◽  
Chaolan Zhou ◽  
Bin Xu ◽  
...  

In this paper, in view of low grinding efficiency and poor ground surface quality of sapphire glass, the coarse diamond grinding wheel dressed by dry impulse electrical discharge was proposed to perform efficient and precise grinding machining of sapphire glass. The dry electrical discharge dressing technology was employed to obtain high grain protrusion and sharp micro-grain cutting edges. The influences of grinding process parameters such as wheel speed, depth of cut and feed speed on the ground surface quality, grinding force and grinding force ratio on sapphire glass were investigated, and the relationship between grinding force and ground surface quality was also revealed. The experimental results show that the grain protrusion height on the surface of a coarse diamond grinding wheel dressed by dry electrical discharge can reach 168.5 µm. The minimum line roughness Ra and surface roughness Sa of ground sapphire glass surface were 0.194 µm and 0.736 µm, respectively. In order to achieve highly efficient ground quality of sapphire glass, the depth of cut was controlled within 7 µm, and the wheel speed and feed speed were 3000–5000 r/min and 10–20 mm/min, respectively. The influences of feed speed and wheel speed on grinding force ratio were more significant, but the influence of depth of cut was little.


1997 ◽  
Vol 119 (4B) ◽  
pp. 689-694 ◽  
Author(s):  
T. Kato ◽  
H. Fujii

The near-surface temperature in the workpiece in surface grinding is measured by applying the PVD film method developed recently for measurement of cutting tool temperature. The boundary, identified clearly, between the melted film zone and unmelted film zone is regarded as the isotherm of the melting point of the film material deposited on the inner surface of the workpiece. The temperature for two kinds of workpieces, plain carbon steel and 18-8 stainless steel, was measured under conventional surface grinding conditions. It was found that the technique is useful in estimating the temperature in the workpiece.


2010 ◽  
Vol 447-448 ◽  
pp. 21-25 ◽  
Author(s):  
Peng Yao ◽  
Nobuhito Yoshihara ◽  
Nobuteru Hitomi ◽  
Ji Wang Yan ◽  
Tsunemoto Kuriyagawa

There is a demand for high-efficiency and high surface integrity grinding of fused silica. Ductile grinding is an ideal method for producing a mirror finished surface on hard and brittle materials to significantly decrease polishing time. However, the fused silica is still difficult to ductile grind because of its high brittleness. A creep feed taper grinding method was applied to investigate the relationship between maximum grit depth of cut and surface integrity of fused silica. Ductile mode grinding was achieved on fused silica. When the depth of cut exceeds the critical wheel depth of cut, the surface suddenly changes from the ductile mode to the brittle mode. At the same ratio of wheel speed and table speed, the critical wheel depth of cut is noticeably increased by increasing the wheel speed which caused an increase in the temperature at the interface of grains and workpiece. The depth of subsurface damage (SSD) was investigated by polishing the ground surface. The experiment results show that the depth of SSD is deepest in transition mode and stables in brittle mode.


1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2009 ◽  
Vol 416 ◽  
pp. 514-518 ◽  
Author(s):  
Qing Long An ◽  
Yu Can Fu ◽  
Jiu Hua Xu

Grinding, characterized by its high specific energy consumption, may generate high grinding zone temperature. These can cause thermal damage to the ground surface and poor surface integrity, especially in the grinding of difficult-to-machine materials. In this paper, experimental and fem study on grinding temperature during surface grinding of Ti-6Al-4V with different cooling methods. A comparison between the experimental and numerical results is made. It is indicated that the difference between experimental and numerical results is below 15% and the numerical results can be considered reliable. Grinding temperature can be more effectively reduced with CPMJ than that with cold air jet and flood cooling method.


Sign in / Sign up

Export Citation Format

Share Document