A Connected Autonomous Vehicle Emulator (CAVE) for Testing Multi-agent, Conventional–Autonomous Mixed Vehicle Traffic Scenarios

Author(s):  
Dan Negrut ◽  
Asher Elmquist ◽  
Radu Serban ◽  
Dylan Hatch ◽  
Parmesh Ramanathan

We discuss a software infrastructure that provides a virtual proving ground for designing, training, and auditing the computer programs used to pilot connected autonomous vehicles (CAVs). This effort does not concentrate on developing the piloting computer programs (PCPs) responsible for path planning in autonomous vehicles (AVs). Instead, we have established a first version of an emulation platform that changes the PCP design/test/improve process, which is often times carried out covertly [46], or in actual traffic conditions with potentially fatal consequences [45, 47].

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2021 ◽  
Vol 11 (11) ◽  
pp. 5057
Author(s):  
Wan-Yu Yu ◽  
Xiao-Qiang Huang ◽  
Hung-Yi Luo ◽  
Von-Wun Soo ◽  
Yung-Lung Lee

The autonomous vehicle technology has recently been developed rapidly in a wide variety of applications. However, coordinating a team of autonomous vehicles to complete missions in an unknown and changing environment has been a challenging and complicated task. We modify the consensus-based auction algorithm (CBAA) so that it can dynamically reallocate tasks among autonomous vehicles that can flexibly find a path to reach multiple dynamic targets while avoiding unexpected obstacles and staying close as a group as possible simultaneously. We propose the core algorithms and simulate with many scenarios empirically to illustrate how the proposed framework works. Specifically, we show that how autonomous vehicles could reallocate the tasks among each other in finding dynamically changing paths while certain targets may appear and disappear during the movement mission. We also discuss some challenging problems as a future work.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Derek Hungness ◽  
Raj Bridgelall

The adoption of connected and autonomous vehicles (CAVs) is in its infancy. Therefore, very little is known about their potential impacts on traffic. Meanwhile, researchers and market analysts predict a wide range of possibilities about their potential benefits and the timing of their deployments. Planners traditionally use various types of travel demand models to forecast future traffic conditions. However, such models do not yet integrate any expected impacts from CAV deployments. Consequently, many long-range transportation plans do not yet account for their eventual deployment. To address some of these uncertainties, this work modified an existing model for Madison, Wisconsin. To compare outcomes, the authors used identical parameter changes and simulation scenarios for a model of Gainesville, Florida. Both models show that with increasing levels of CAV deployment, both the vehicle miles traveled and the average congestion speed will increase. However, there are some important exceptions due to differences in the road network layout, geospatial features, sociodemographic factors, land-use, and access to transit.


Author(s):  
Nurul Saliha Amani Ibrahim ◽  
Faiz Asraf Saparudin

The path planning problem has been a crucial topic to be solved in autonomous vehicles. Path planning consists operations to find the route that passes through all of the points of interest in a given area. Several algorithms have been proposed and outlined in the various literature for the path planning of autonomous vehicle especially for unmanned aerial vehicles (UAV). The algorithms are not guaranteed to give full performance in each path planning cases but each one of them has their own specification which makes them suitable in sophisticated situation. This review paper evaluates several possible different path planning approaches of UAVs in terms optimal path, probabilistic completeness and computation time along with their application in specific problems.


Author(s):  
Sai Rajeev Devaragudi ◽  
Bo Chen

Abstract This paper presents a Model Predictive Control (MPC) approach for longitudinal and lateral control of autonomous vehicles with a real-time local path planning algorithm. A heuristic graph search method (A* algorithm) combined with piecewise Bezier curve generation is implemented for obstacle avoidance in autonomous driving applications. Constant time headway control is implemented for a longitudinal motion to track lead vehicles and maintain a constant time gap. MPC is used to control the steering angle and the tractive force of the autonomous vehicle. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4165 ◽  
Author(s):  
Lasse Damtoft Nielsen ◽  
Inkyung Sung ◽  
Peter Nielsen

To cover an area of interest by an autonomous vehicle, such as an Unmanned Aerial Vehicle (UAV), planning a coverage path which guides the unit to cover the area is an essential process. However, coverage path planning is often problematic, especially when the boundary of the area is complicated and the area contains several obstacles. A common solution for this situation is to decompose the area into disjoint convex sub-polygons and to obtain coverage paths for each sub-polygon using a simple back-and-forth pattern. Aligned with the solution approach, we propose a new convex decomposition method which is simple and applicable to any shape of target area. The proposed method is designed based on the idea that, given an area of interest represented as a polygon, a convex decomposition of the polygon mainly occurs at the points where an interior angle between two edges of the polygon is greater than 180 degrees. The performance of the proposed method is demonstrated by comparison with existing convex decomposition methods using illustrative examples.


2021 ◽  
Vol 13 (9) ◽  
pp. 4769
Author(s):  
Amalia Polydoropoulou ◽  
Ioannis Tsouros ◽  
Nikolas Thomopoulos ◽  
Cristina Pronello ◽  
Arnór Elvarsson ◽  
...  

The introduction of shared autonomous vehicles into the transport system is suggested to bring significant impacts on traffic conditions, road safety and emissions, as well as overall reshaping travel behaviour. Compared with a private autonomous vehicle, a shared automated vehicle (SAV) is associated with different willingness-to-adopt and willingness-to-pay characteristics. An important aspect of future SAV adoption is the presence of other passengers in the SAV—often people unknown to the cotravellers. This study presents a cross-country exploration of user preferences and WTP calculations regarding mode choice between a private non-autonomous vehicle, and private and shared autonomous vehicles. To explore user preferences, the study launched a survey in seven European countries, including a stated-preference experiment of user choices. To model and quantify the effect of travel mode attributes and socio-demographic characteristics, the study employs a mixed logit model. The model results were the basis for calculating willingness-to-pay values for all countries and travel modes, and provide insight into the significant heterogeneous, gender-wise effect of cotravellers in the choice to use an SAV. The study results highlight the importance of analysis of the effect of SAV attributes and shared-ride conditions on the future acceptance and adoption rates of such services.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5053 ◽  
Author(s):  
Saba Arshad ◽  
Muhammad Sualeh ◽  
Dohyeong Kim ◽  
Dinh Van Nam ◽  
Gon-Woo Kim

In recent years, research and development of autonomous driving technology have gained much interest. Many autonomous driving frameworks have been developed in the past. However, building a safely operating fully functional autonomous driving framework is still a challenge. Several accidents have been occurred with autonomous vehicles, including Tesla and Volvo XC90, resulting in serious personal injuries and death. One of the major reasons is the increase in urbanization and mobility demands. The autonomous vehicle is expected to increase road safety while reducing road accidents that occur due to human errors. The accurate sensing of the environment and safe driving under various scenarios must be ensured to achieve the highest level of autonomy. This research presents Clothoid, a unified framework for fully autonomous vehicles, that integrates the modules of HD mapping, localization, environmental perception, path planning, and control while considering the safety, comfort, and scalability in the real traffic environment. The proposed framework enables obstacle avoidance, pedestrian safety, object detection, road blockage avoidance, path planning for single-lane and multi-lane routes, and safe driving of vehicles throughout the journey. The performance of each module has been validated in K-City under multiple scenarios where Clothoid has been driven safely from the starting point to the goal point. The vehicle was one of the top five to successfully finish the autonomous vehicle challenge (AVC) in the Hyundai AVC.


2020 ◽  
Vol 39 (12) ◽  
pp. 1367-1376
Author(s):  
Siddharth Agarwal ◽  
Ankit Vora ◽  
Gaurav Pandey ◽  
Wayne Williams ◽  
Helen Kourous ◽  
...  

This article presents a challenging multi-agent seasonal dataset collected by a fleet of Ford autonomous vehicles (AVs) at different days and times during 2017–2018. The vehicles traversed an average route of 66 km in Michigan that included a mix of driving scenarios such as the Detroit airport, freeways, city centers, university campus, and suburban neighborhoods. Each vehicle used in this data collection was a Ford Fusion outfitted with an Applanix POS-LV GNSS/INS system, four HDL-32E Velodyne 3D-lidar scanners, six Point Grey 1.3 MP cameras arranged on the rooftop for 360° coverage, and one Point Grey 5 MP camera mounted behind the windshield for the forward field of view. We present the seasonal variation in weather, lighting, construction, and traffic conditions experienced in dynamic urban environments. We also include data from multiple AVs that were driven in close proximity. This dataset can help design robust algorithms for AVs and multi-agent systems. Each log in the dataset is time-stamped and contains raw data from all the sensors, calibration values, pose trajectory, ground-truth pose, and 3D maps. All data is available in rosbag format that can be visualized, modified, and applied using the open-source Robot Operating System (ROS). We also provide the output of reflectivity-based localization for bench-marking purposes. The dataset can be freely downloaded at avdata.ford.com .


Author(s):  
Jiajia Chen ◽  
Wuhua Jiang ◽  
Pan Zhao ◽  
Jinfang Hu

Purpose Navigating in off-road environments is a huge challenge for autonomous vehicles, due to the safety requirement, the effects of noises and non-holonomic constraints of vehicle. This paper aims to describe a path planning method based on fuzzy support vector machine (FSVM) and general regression neural network (GRNN) that is able to provide a solution path for the autonomous vehicle navigating in the off-road environments. Design/methodology/approach The authors decompose the path planning problem into three steps. In the first step, A* algorithm is applied to obtain the positive and negative samples. In the second step, the authors use a learning approach based on radial basis function kernel FSVM to maximize the safety margin for driving, and the fuzzy membership is designed based on GRNN which can help to resolve the problem that the traditional path planning method is easily influenced by noises or outliers. In the third step, the Bezier interpolation algorithm is used to smooth the path. The simulations are designed to verify the parameters of the path planning algorithm. Findings The method is implemented on autonomous vehicle and verified against many outdoor scenes. Road test indicates that the proposed method can produce a flexible, smooth and safe path with good anti-jamming performance. Originality/value This paper applied a new path planning method based on GRNN-FSVM for autonomous vehicle navigating in off-road environments. GRNN-FSVM can reduce the effects of outliers and maximize the safety margin for driving, the generated path is smooth and safe, while satisfying the constraint of vehicle kinematic.


Sign in / Sign up

Export Citation Format

Share Document