Estimation of Contact Stiffness and its Role in the Design of a Friction Damper

Author(s):  
J. Szwedowicz ◽  
M. Kissel ◽  
B. Ravindra ◽  
R. Kellerer

The use of under-platform friction dampers is a common practice for the elimination of high cycle fatigue failures of turbomachinery blading. Damper performance curves and damper optimization curves are used for the design of friction dampers. It is establishedAAfrom the previous work that apart from damper mass, the contact stiffness between damper and the blade platform is an important parameter in achieving a good damper design. Several methods for the estimation of damper stiffness have been proposed in the literature. Some of them include: 1. Curve fitting approach to a measured frequency response function, 2. Compliance measurement, 3. Measurement of hysteresis loop etc. However, it is not possible to carry out extensive sets of experiments to observe the influence of various parameters on the contact stiffness. Numerical and/or analytical models for contact stiffness evaluation are the present needs for a damper designer. This paper addresses a detailed investigation of the contact stiffness computation. Finite element modeling of the damper and the platform is carried out to study the effect of various parameters such as friction coefficient, centrifugal load, material properties etc. on the contact stiffness. The role of surface roughness and wear are neglected in the present analysis. The reliability of the applied finite element meshes is verified by simulating Hertz’s contact problems. The parametric study indicates that the contact stiffness builds up with increase in friction coefficient, centrifugal force and elastic modulus of the damper material. The results received from a pilot experiment are also presented for further evaluation of the computed results. Finally, a very good agreement between the numerical and experimental performance curves (resonance response amplitude of the blade versus excitation amplitude for the constant damper mass; Cameron et. al, 1987) of the blade with the damper is found for the tangential contact stiffness obtained from the finite element calculation. The present work extends the quest for a rational approach to damper design.

2021 ◽  
Author(s):  
Ryuichi Umehara ◽  
Sotaro Takei ◽  
Tomohiro Akaki ◽  
Hiroki Kitada

Abstract Turbine blades are used under increasingly severe conditions in order to increase the thermal efficiency of the gas turbines in operation. Friction dampers are often used to reduce the vibration of the blade and improve the plant reliability. Under platform dampers designed to generate friction between platforms and dampers have been widely adopted in gas turbines as one of the friction dampers. It is important to predict the vibration characteristics of such damper blades analytically during the design phase, and many analysis methods have been proposed vigorously. However, the phenomenon of the friction damper is not fully understood because of its complicated behavior due to nonlinearity such as contact and sliding. One of them is the variability of frequency generated in the under platform dampers. Recently, it has been reported on the variability of frequency in the mock-up blade test greatly under small excitation force, due to variability of contact surfaces. As different approach, mechanism of the variability of frequency is explained even if each damper pin has the same dimensions and characteristics of stiffness each other under the range of small vibration without slipped phenomena. In this paper, the phenomenon of this frequency variation is shown based on two physical phenomena. First, it shows the geometric nonlinear characteristics in which the normal load changes by the friction coefficient of the pin and the pin angle. Second, it shows the stiffness nonlinear characteristics in which the contact stiffness changes with the normal load of the pin. Based on the new proposed modeling of combining the geometric nonlinear characteristics and nonlinear stiffness characteristics, the phenomenon is shown in which the relative displacement of the pin changes the load and contact stiffness, and the frequency changes. It also shows that the maximum normal load before sliding is different depending on the friction coefficient and the pin angle, and that when the friction coefficient is large and the damper angle is large, the change in contact stiffness due to the normal load is large and the variability of frequency is large.


2019 ◽  
Vol 90 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Louis Gagnon ◽  
Marco Morandini ◽  
Gian Luca Ghiringhelli

Abstract This survey provides an insight into the modeling and testing of uniaxial friction dampers. The focus is on attenuating the linear relative movement along planar surfaces for frequencies between 10 Hz and 1 kHz. An overview of the different approaches seen in the literature concerning friction damping is provided. Examples and evaluation of such dampers excited over a wide range of frequencies are presented. The information required to develop models of friction dampers is covered. To that end, different modeling approaches are presented for dry friction. Dynamic friction models with an internal state are covered, and their advantages are described. Other modeling approaches are reported for complete systems with friction dampers. Both numerical and analytical models are covered. Experimental configurations from a selection of authors are also included. Finally, a series of suggestions for the numerical modeling and experimental testing of a friction damper are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
L. Gaul ◽  
J. Becker

Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance, transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general way. As a remedy, a special simulation framework is developed which allows efficiently modeling interfaces with friction and normal contact by appropriate constitutive laws which are implemented by contact elements in a finite-element model. Furthermore, special model reduction techniques using a substructuring approach are employed for faster simulation.


1990 ◽  
Vol 112 (2) ◽  
pp. 175-182 ◽  
Author(s):  
T. M. Cameron ◽  
J. H. Griffin ◽  
R. E. Kielb ◽  
T. M. Hoosac

A procedure is outlined for determining the optimal design of friction dampers for high-speed turbomachinery blading. The procedure includes: An integration of bench test results with finite-element analysis and a single-mode blade model to ensure accuracy of the analytical model and improve reliability of the friction damper design; an extension of the single-mode blade model to predict the engine behavior of friction dampers; and a new way of viewing analytical and experimental results in terms of a damper performance curve to determine optimal design parameters, when the levels of excitation and damping in the system are unknown. Unique experiments are performed on a test disk in order to demonstrate and verify the accuracy of the design procedure.


2006 ◽  
Vol 129 (2) ◽  
pp. 511-521 ◽  
Author(s):  
K-H. Koh ◽  
J. H. Griffin

A model that predicts the quasi-static behavior of a friction damper that has spherical contacts was developed using Mindlin’s theory. The model was integrated into a dynamic analysis that predicts the vibratory response of frictionally damped blades. The analytical approach was corroborated through a set of benchmark experiments using a blades/damper test fixture. There was good agreement between the theoretical predictions of amplitude and the values that were measured experimentally over a wide range of test conditions. It is concluded that it is possible to predict the vibratory response of frictionally damped vibrating systems using continuum mechanics, provided that the contact geometry is clearly defined and the local nonlinear contact is correctly taken into account.


2016 ◽  
Vol 681 ◽  
pp. 214-227 ◽  
Author(s):  
Gabriel Hattori ◽  
Alberto Luiz Serpa

One of the key issues in solving contact problems is the correct choice of the contact parameters. The contact stiffness, the penetration limit and the contact algorithm are some of the parameters that have to be adjusted. There are no methodologies available in the literature for choosing the contact parameters, relying only on the user experience for this important task. In this work we investigate how the contact parameters behave in a commercial finite element analysis software. We will show that while the contact stiffness has great influence on the finite element analysis, other parameters will not affect it significantly. Some contact examples are shown to illustrate the performance of the contact parameters during the solution of a contact problem.


1978 ◽  
Vol 6 (1) ◽  
pp. 3-47 ◽  
Author(s):  
R. A. Schapery

Abstract Fourier methods of analysis are employed to develop linear viscoelastic stress and displacement solutions for use in contact problems, and then some exact results for contact area and the deformation component of the friction coefficient are derived for materials whose complex modulus obeys a power law in frequency. A model for predicting waves of detachment resulting from adhesion is proposed, and it is shown that an analogy exists whereby the solution method for sliding without adhesion can be used to predict these waves and the resulting frictional force.


2013 ◽  
Vol 361-363 ◽  
pp. 1664-1670
Author(s):  
Chong Wei Huang ◽  
Er Hao Su ◽  
Xian Zhi Shao ◽  
Yi Zhang ◽  
Lie Ping Wang

Based on ABAQUS software, a 3-D finite element model which content the nonlinear contact problems and contact-earth subgrade-monilithic was given to analysis the mechanical behavior of the monolithic roadbed. Mechanics behavior and deflection of the monolithic roadbed, deflection and compressive stress of earth subgrade evaluated in detail with respect to varied structure layer combination and materials parameters. The results indicate that the increase roadbed thickness can significantly reduce the monolithic roadbeds tensile stress, which can reach 1.042MPa. With the increase of the friction coefficient, level of tensile stress σdy, monolithic deflection Dd , the compressive stress σsz and deflection on earth subgrade were slightly reduced.


Author(s):  
K.-H. Koh ◽  
J. H. Griffin

A model that predicts the quasi-static behavior of a friction damper that has spherical contacts was developed using Mindlin’s theory. The model was integrated into a dynamic analysis that predicts the vibratory response of frictionally damped blades. The analytical approach was corroborated through a set of benchmark experiments using a blades/damper test fixture. There was good agreement between the theoretical predictions of amplitude and the values that were measured experimentally over a wide range of test conditions. It is concluded that it is possible to predict the vibratory response of frictionally damped vibrating systems using continuum mechanics, provided that the contact geometry is clearly defined and the local nonlinear contact is correctly taken into account.


2015 ◽  
Vol 651-653 ◽  
pp. 65-70 ◽  
Author(s):  
Abir Abdelkefi ◽  
Nathalie Boudeau ◽  
Pierrick Malecot ◽  
Noamen Guermazi ◽  
Gérard Michel

The friction conditions are responsible of the thickness distribution in a part realized by tube hydroforming. Then it is essential to have a good evaluation of the friction coefficient for running predictive finite element simulations. The tube expansion in a square die is one of tests proposed for the friction evaluation. In the literature, several analytical models have been developed for this specific test. The present paper concentrates on one of this model and results obtained from the analytical analysis, FE simulations and experiments are compared. The repartition of the thickness over the shaped tube and its evolution during the process are studied. The tendencies are in agreement but some complementary evaluations are proposed for using the proposed approach for the evaluation of the friction coefficient with the analytical model.


Sign in / Sign up

Export Citation Format

Share Document