Development of a Centrifugal Compressor for a Small Gas-Turbine Engine

Author(s):  
N. R. Balling ◽  
V. W. van Ornum

The objective of the research and development program reported by this paper was to decrease the specific fuel consumption of a small gas-turbine engine by means of an increase in pressure ratio alone. Development of a centrifugal compressor is presented, with a general description of equipment, methods, and special problems met during the tests. Results showed the required decrease in specific fuel consumption and pointed up the advantages of a straightforward development program.

Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


In this study, a process of inlet air cooling was implemented in the intake of a land-based gas turbine engine for electricity generation. The motivation behind the study is to improve the performance of the gas turbine engine in hot climate conditions,which causes a significant decrease in the output power and an increase in specific fuel consumption. For inlet air cooling, a refrigeration cycle was attached to the turbo-shaft gas turbine engine,and power required by the refrigeration is extracted from the mechanical engine power output of the gas turbine. A 43 MWclass gas turbine engine which is similar totheGeneral Electric LM6000 engine was modeled in this study. Considering an average coefficient of performance of 3.0 for a refrigeration system, the inlet cooling provided (by supplying cooled inlet air at 15oC) a 22.21% net power increase anda5.2% power specific fuel consumption improvement at 55oCambient conditions.


Author(s):  
C. A. Fucinari ◽  
J. K. Vallance ◽  
C. J. Rahnke

The design and development of the regenerator seals used in the AGT101 gas turbine engine are described in this paper. The all ceramic AGT101 gas turbine engine was designed for 100 hp at 5:1 pressure ratio with 2500F (1371C) turbine inlet temperature. Six distinct phases of seal design were investigated experimentally and analytically to develop the final design. Static and dynamic test rig results obtained during the seal development program are presented. In addition, analytical techniques are described. The program objectives of reduced seal leakage, without additional diaphragm cooling, to 3.6% of total engine airflow and higher seal operating temperature resulting from the 2000F (1093C) inlet exhaust gas temperature were met.


2021 ◽  
pp. 5-16
Author(s):  
Yu.М. Temis ◽  
A.V. Solovjeva ◽  
Yu.N. Zhurenkov ◽  
A.N. Startsev ◽  
M.Yu. Temis ◽  
...  

Author(s):  
Anton Salnikov ◽  
Maxim Danilov

The high-loaded centrifugal compressor blisk-type impeller, one of the main low-sized gas-turbine engine components, strongly affects engine efficiency. However, its design is a time-consuming and complex task for several reasons, including its high loading, the large number of structural and technological constraints, and the variety of requirements needed for application to a gas-turbine engine centrifugal compressor impeller (e.g., increased efficiency and strength, minimized weight requirements, etc.). The imposition of several constraints for structure modification of the centrifugal wheels can improve one characteristic but can worsen others. The standard solution for this problem is to use an iterative approach, whereby the design process is reduced to a consistent set of impeller element design problem statements and decisions; these are separate for different analysis disciplines. The main drawbacks to this approach are that it is labor intensive and can cause deterioration of the design quality because this procedure does not consider the design object as a unit. The present work considers a centrifugal compressor wheel design approach based on the use of an integrated multidisciplinary parameterized 3D model. This model includes a number of specialized sub-models that describe the necessary design areas as well as physical process features and phenomena occurring in the designed object. The model also realizes the integration and interaction of sub-models used in an integrated computing space. The proposed approach allows the optimization of the structure based on several criteria, such as the mass of the wheel, stage efficiency, strength, economic indicators, etc. The result of multi-criteria optimization is not a single product design, but a set of optimal Pareto points, which describes a number of centrifugal wheel models. The optimal configuration is selected from this set, based on what is considered the most important criterion. Optimization criteria may vary depending on the problem formulation, but the design technology, parameterization scheme, and choice of multidisciplinary integrated mathematical model are retained. Therefore, in the case of a product requirement correction, a new optimal design will require less time. In aggregate, with the nonlinear constrained optimization application, this approach reduces the total time of the design cycle, decreases development costs, and improves quality.


Author(s):  
Walter Brockett ◽  
Angelo Koschier

The overall design of and Advanced Integrated Propulsion System (AIPS), powered by an LV100 gas turbine engine, is presented along with major test accomplishments. AIPS was a demonstrator program that included design, fabrication, and test of an advanced rear drive powerpack for application in a future heavy armored vehicle (54.4 tonnes gross weight). The AIPS design achieved significant improvements in volume, performance, fuel consumption, reliability/durability, weight and signature reduction. Major components of AIPS included the recuperated LV100 turbine engine, a hydrokinetic transmission, final drives, self-cleaning air filtration (SCAF), cooling system, signature reduction systems, electrical and hydraulic components, and control systems with diagnostics/prognostics and maintainability features.


Author(s):  
Hideo Kobayashi ◽  
Shogo Tsugumi ◽  
Yoshio Yonezawa ◽  
Riuzou Imamura

IHI is developing a new heavy duty gas turbine engine for 2MW class co-generation plants, which is called IM270. This engine is a simple cycle and single-spool gas turbine engine. Target thermal efficiency is the higher level in the same class engines. A dry low NOx combustion system has been developed to clear the strictest emission regulation in Japan. All parts of the IM270 are designed with long life for low maintenance cost. It is planned that the IM270 will be applied to a dual fluid system, emergency generation plant, machine drive engine and so on, as shown in Fig.1. The development program of IM270 for the co-generation plant is progress. The first prototype engine test has been started. It has been confirmed that the mechanical design and the dry low NOx system are practical. The component tuning test is being executed. On the other hand, the component test is concurrently in progress. The first production engine is being manufactured to execute the endurance test using a co-generation plant at the IHI Kure factory. This paper provides the conceptual design and status of the IM270 basic engine development program.


Author(s):  
Vladimir Lupandin ◽  
Martyn Hexter ◽  
Alexander Nikolayev

This paper describes a development program active at Magellan Aerospace Corporation since 2003, whereby specific modifications are incorporated into an Avco Lycoming T-53 helicopter gas turbine engine to enable it to function as a ground based Industrial unit for distributed power generation. The Lycoming T-53 is a very well proven and reliable two shaft gas turbine engine whose design can be traced back to the 1950s and the fact of its continued service to the present day is a tribute to the original design/development team. Phase 1 of the Program introduces abradable rotor path linings, blade coatings and changes to seal and blade tip clearances. Magellan has built a test cell to run the power generation units to full speed and full power in compliance with ISO 2314. In co-operation with Zorya-Mashproekt, Ukraine, the exhaust emissions of the existing combustion system for natural gas was reduced by 30%. New nozzles for low heat value fuels and for high hydrogen content fuels (up to 60% H2) have been developed. The T-53 gas turbine engine exhaust gas temperature is typically around 620 deg C, which makes it a very good candidate for co-generation and recuperated applications. As per Phase 2 of the program, the existing helicopter integral gearbox and separate industrial step-down gearbox will be replaced with single integral gearbox that will use the same lubrication oil system as the gas turbine engine. The engine power output will increase to 1200 kW at the generator terminals with an improvement to 25% efficiency ISO. Phase 3 of the Program will see the introduction of a new silo type combustion system, developed in order to utilize alternative fuels such as bio-diesel, biofuel (product of wood pyrolysis), land fill gases, syn gases etc. Phase 4 of the Program in cooperation with ORMA, Russia will introduce a recuperator into the package and is expected to realize a boost in overall efficiency to 37%. The results of testing the first two T-53 industrial gas turbine engines modified per Phase 1 will be presented.


Sign in / Sign up

Export Citation Format

Share Document