Distortion Tolerance: By Design Instead of by Accident

Author(s):  
C. E. Langston

A variety of techniques are available today that may be employed by the compressor designer to minimize the adverse effects of inlet distortion. The effects of individual stage rotor matching and blade chord length have been qualitatively indicated by isolated airfoil data. These effects have been verified through testing of several multistage axial flow compressors. Matching of early compressor stages well below their peak pressure ratio has been shown to significantly reduce the sensititivty of the entire compressor-to-inlet distortion. Careful selection of blade geometry by the designer may be used to provide a favorable balance between distortion tolerance and performance. In addition, increases in rotor blade chord length and use of honeycomb blade tip shrouds have been shown to further reduce the compressor’s sensititivity to distortion. Finally, the association of inlet distortion with turbulence is established. This association assures the designer that accommodations made for time-average spatial distortion will be effective in combating the adverse effects of inlet turbulence.

2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early

This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes were designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor was highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and noncavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.


Author(s):  
Hossein Khaleghi ◽  
Reza Jalaly

Half-annulus unsteady numerical simulations have been conducted with a 60-deg total pressure circumferential distortion in a transonic axial-flow fan. The effects of inlet distortion on the performance, stability and flow field of the test case are investigated and analyzed. Results show that the incidence angles are reduced when the blades are entering into the distorted region. Conversely, distortion increases the incidence angles onto the blades when they are leaving the distorted section. Results further reveal that the time-averaged flow field at the tip of the blade is similar with and without distortion. However, the distortion applied is found to have detrimental effects on both the stability and performance. The impacts of both annular and discrete tip injection on the endwall flow field are further studied in the current work. It is shown that endwall injection reduces the incidence angles onto the blades. Consequently, the passage shock and the leakage flow are pushed rearward, which postpones stall initiation.


2012 ◽  
Vol 224 ◽  
pp. 352-357
Author(s):  
Islem Benhegouga ◽  
Ce Yang

In this work, steady air injection upstream of the blade leading edge was used in a transonic axial flow compressor, NASA rotor 37. The injectors were placed at 27 % upstream of the axial chord length at blade tip, the injection mass flow rate is 3% of the chock mass flow rate, and 3 yaw angles were used, respectively -20°, -30°, and -40°. Negative yaw angles were measured relative to the compressor face in opposite direction of rotational speeds. To reveal the mechanism, steady numerical simulations were performed using FINE/TURBO software package. The results show that the stall mass flow can be decreased about 2.5 %, and an increase in the total pressure ratio up to 0.5%.


Author(s):  
Peng Song ◽  
Jinju Sun ◽  
Ke Wang

Transonic axial flow fan has relatively high blade tip speed and produces higher pressure ratio than the subsonic. However, considerable losses are brought about by the shock waves close to blade tip and over part of span, leading to deteriorated overall efficiency and operating flow range. It is generally acknowledged that modifications of blade stacking line (axially sweep and tangentially lean) and sectional profiles can help to control spanwise distribution of blade loading, reduce shock loss and secondary flow, and extend the operating flow range. The present study is to maximize the comprehensive benefits of simultaneously optimizing the sectional profiles and stack line by means of a global optimization method with reduced cost. In contrast with previous studies, it is of two distinguished features. First, in blade geometry parameterization, both sectional profiles and stacking line are varied to provide more flexible blade shape variation and subsequently permit more optimization performance gains. Secondly, with simultaneous variation of sectional profiles and stacking line, number of optimization variables and nonlinearity of optimization problem will increase largely. How to obtain a global optimal solution and also reduce the computation become the major concerns. For this purpose, a global optimization method proposed by us is used. It includes an improved CCEA (Cooperative Co-Evolution Algorithm) optimizer, adaptively updated kriging surrogate model, and one-stage Expected Improvement (EI) approach that permits adaptive sampling. At initial stage, a coarse surrogate model is constructed with small number of samples. During the optimization process, some new samples are identified, evaluated, and then used to refine the model and conduct further optimal searching. In the optimization process, the accuracy of the surrogate model is improved based on its own characteristics of optimization problem and this permits the optimizer to conduct the aim-oriented optimal searches. In such a manner, the surrogate model sustains high-level of accuracy while uses fewer samples, thus the blade optimization and computations are significantly reduced. The optimization is conducted for NASA Rotor67 at design flow rate with a single workstation of DELL 7500. It is demonstrated that the optimized blade design produces significant performance gains at design condition (where the overall efficiency and pressure ratio are increased respectively by 1.27 and 6.53 points) and also at off-design conditions.


Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early

This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes have been designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor has been highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and non-cavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.


Author(s):  
Arash Soltani Dehkharqani ◽  
Masoud Boroomand ◽  
Hamzeh Eshraghi

There is a severe tendency to reduce weight and increase power of gas turbine. Such a requirement is fulfilled by higher pressure ratio of compressor stages. Employing tandem blades in multi-stage axial flow compressors is a promising methodology to control separation on suction sides of blades and simultaneously implement higher turning angle to achieve higher pressure ratio. The present study takes into account the high flow deflection capabilities of the tandem blades consisting of NACA-65 airfoil with fixed percent pitch and axial overlap at various flow incidence angles. In this regard, a two-dimensional cascade model of tandem blades is constructed in a numerical environment. The inlet flow angle is varied in a wide range and overall loss coefficient and deviation angles are computed. Moreover, the flow phenomena between the blades and performance of both forward and afterward blades are investigated. At the end, the aerodynamic flow coefficient of tandem blades are also computed with equivalent single blades to evaluate the performance of such blades in both design and off-design domain of operations. The results show that tandem blades are quite capable of providing higher deflection with lower loss in a wide range of operation and the base profile can be successfully used in design of axial flow compressor. In comparison to equivalent single blades, tandem blades have less dissipation because the momentum exerted on suction side of tandem blades confines the size of separation zone near trailing edges of blades.


Author(s):  
A Whitfield ◽  
M D C Doyle ◽  
M R Firth

The compressor design requirement was for a pressure ratio of 3.6, with a peak pressure ratio of 4.3 at the maximum non-dimensional speed of the impeller of 1.66. Due to the stress-limited speed, an aluminium alloy impeller was specified, the impeller discharge blade backsweep had to be restricted and the application of prewhirl was considered from the outset as a means of extending the operating range. A non-dimensional conceptual design procedure, including the effect of inlet prewhirl, was applied to the design of three turbo- charger impellers. An impeller, designated A, was designed with the inclusion of 25° of prewhirl. A second impeller, designated B, was designed with zero prewhirl for comparison purposes, but was not manufactured. A third impeller, C, was manufactured through the modification of an existing design and the design study was applied to the assessment of this third design.


Author(s):  
A Whitfield ◽  
M D C Doyle ◽  
M R Firth

The performance of two turbocharger impeller designs was evaluated experimentally. The compressor design requirement was for a pressure ratio of 3.6, with a peak pressure ratio of 4.3 at a maximum non-dimensional impeller speed of 1.66. Due to the stress-limited speed the impeller discharge blade backsweep had to be restricted and the application of prewhirl was considered from the outset as a means of extending the operating range. An impeller, designated A, was designed with 25° of prewhirl applied. A second impeller, designated B, was designed with zero prewhirl for comparison purposes, but was not manufactured. A third impeller, C, was manufactured, in place of impleller B, through the modification of an existing design. This experimental study includes the assessment of this third impeller together with impeller A.


Author(s):  
Maoyi Li ◽  
Wei Yuan ◽  
Xizhen Song ◽  
Yajun Lu ◽  
Zhiping Li ◽  
...  

The traditional annulus casing treatment often pays the price of lowered efficiency for improving the stall margin of a compressor under inlet distortion. In view of the unsymmetry of the inlet flow-field of compressors, partial casing treatment was used to control the flow in a transonic axial-flow compressor with arc-skewed-slots deployed at different circumferential positions under inlet distortion. The experimental results indicate that when the partial casing treatment is arranged on the undistorted and distorted sectors, the stall margin is enhanced by 8.02%, with the relative peak efficiency improved simultaneously by 2.143%, compared with the case of solid casing at 98% rotating speed. By contrast, the traditional casing treatment increases the stall-margin by 23.13%, but decreases the relative peak efficiency by 0.752%. By analyzing dynamic and static experimental data, the mechanism underlying the partial casing treatment was also studied in detail here. The disturbances of inlet flow were restrained by annulus casing treatment, nevertheless the total pressure ratio was decreased obviously in the distorted sector. As a result, the stall-margin is improved, but the relative peak efficiency is decreased too. When the partial casing treatment was arranged on the undistortded and distorted sectors, the stall disturbances was thereby restrained. So the stall margin was enhanced. In addition, the total pressure ratio was improved by the partial casing treatment in the distorted and transition sectors, and thus the relative peak efficiency was also increased markedly.


2021 ◽  
Vol 9 ◽  
Author(s):  
D. Liang ◽  
C. Song ◽  
S. Liang ◽  
S. Wang ◽  
Y. Li ◽  
...  

With the aim of improving the aerodynamic performance of axial turbomachinery, a new type of blade is designed using the equal–variable circulation method. Taking an axial flow fan as the research object, this article describes the development of a new type of turbomachinery by changing the design method and producing a blade with forward sweep. The aerodynamic performance of the fan is simulated and compared with the experimental data. The numerical results show that the equal circulation design method improves the aerodynamic performance of the blade roots, while the variable circulation design method enhances the aerodynamic performance of the blade tips. By adopting the equal–variable circulation design method, the total pressure of the experimental fan is increased by about 4%, while the efficiency remains unchanged. Forward-swept blades with an equal–variable circulation design also improve performance over the conventional blades by changing the center-of-gravity stacking line. At low flow rates, the efficiency of the experimental fan can be increased by 7.5%, and the working range of the flow is expanded. Under high flow rates, the restriction of the blade tip on the airflow is decreased and the fluidity is slightly reduced.


Sign in / Sign up

Export Citation Format

Share Document