scholarly journals Reduction of Low Power Smoke Emission From an Industrial Gas Turbine Engine

Author(s):  
T. R. Koblish ◽  
H. R. Schwartz

In certain applications, gas turbine engines used for stationary or marine power must on occasion operate in a power range far below normal engine idle speed. At this low power range, conditions are least favorable for good combustor performance. As a result, operation at these conditions with heavy distillate fuels may result in the emission of white acrid smoke from the engine exhaust stacks. Concern over this situation by the authors’ company prompted the initiation of a burner rig program to determine the effect of fuel atomization and stratification on combustion stability, combustion efficiency, and quantity of “white” smoke emission. The program test results indicated that the white smoke at low idle conditions can be eliminated or at least substantially reduced, with no deterioration in performance or smoke at high power, by increasing the local fuel air ratio within the burner front end and by improving fuel atomization.

Author(s):  
Yoichiro Ohkubo ◽  
Osamu Azegami ◽  
Hiroshi Sato ◽  
Yoshinori Idota ◽  
Shinichiro Higuchi

A 300 kWe class gas turbine which has a two-shaft and simple-cycle has been developed to apply to co-generation systems. The gas turbine engine is operated in the range of about 30% partial load to 100% load. The gas turbine combustor requires a wide range of stable operations and low NOx characteristics. A double staged lean premixed combustor, which has a primary combustion duct made of Si3N4 ceramics, was developed to meet NOx regulations of less than 80 ppm (corrected at 0% oxygen). The gas turbine with the combustor has demonstrated superior low-emission performance of around 40 ppm (corrected at 0% oxygen) of NOx, and more than 99.5% of combustion efficiency between 30% and 100% of engine load. Endurance testing has demonstrated stable high combustion performance over 3,000 hours in spite of a wide compressor inlet air temperature (CIT) range of 5 to 35 degree C.. While increasing the gas generator turbine speed, the flow rate of primary fuel was controlled to hold a constant equivalence ratio of around 0.5 in the CIT range of more than 15 C. The output power was also decreased while increasing the CIT, in order to keep a constant temperature at the turbine inlet. The NOx decreases in the CIT range of more than 15 C. On the other hand, the NOx increases in the CIT range of less than 15 C when the output power was kept a constant maximum power. As a result, NOx emission has a peak value of about 40 ppm at 15 C.


2001 ◽  
Vol 123 (3) ◽  
pp. 574-579 ◽  
Author(s):  
M. Y. Leong ◽  
C. S. Smugeresky ◽  
V. G. McDonell ◽  
G. S. Samuelsen

Designers of advanced gas turbine combustors are considering lean direct injection strategies to achieve low NOx emission levels. In the present study, the performance of a multipoint radial airblast fuel injector Lean Burn injector (LBI) is explored for various conditions that target low-power gas turbine engine operation. Reacting tests were conducted in a model can combustor at 4 and 6.6 atm, and at a dome air preheat temperature of 533 K, using Jet-A as the liquid fuel. Emissions measurements were made at equivalence ratios between 0.37 and 0.65. The pressure drop across the airblast injector holes was maintained at 3 and 7–8 percent. The results indicate that the LBI performance for the conditions considered is not sufficiently predicted by existing emissions correlations. In addition, NOx performance is impacted by atomizing air flows, suggesting that droplet size is critical even at the expense of penetration to the wall opposite the injector. The results provide a baseline from which to optimize the performance of the LBI for low-power operation.


2019 ◽  
Vol 55 (1-2) ◽  
pp. 3-9
Author(s):  
A. S. Pugachuk ◽  
V. G. Pribylov ◽  
V. V. Volkov-Muzylev ◽  
V. N. Konoplev

Author(s):  
May Y. Leong ◽  
Craig S. Smugeresky ◽  
Vincent G. McDonell ◽  
G. Scott Samuelsen

Designers of advanced gas turbine combustors are considering lean direct injection strategies to achieve low NOx emission levels. In the present study, the performance of a multipoint radial airblast fuel injector (“Lean Burn Injector—LBI”) is explored for various conditions that target low-power gas turbine engine operation. Reacting tests were conducted in a model can combustor at 4 atm and 6.6 atm, and at a dome air preheat temperature of 533 K, using Jet-A as the liquid fuel. Emissions measurements were made at equivalence ratios between 0.37 and 0.65. The pressure drop across the airblast injector holes was maintained at 3% and 7–8%. The results indicate that the LBI performance for the conditions considered is not sufficiently predicted by existing emissions correlations. In addition, NOx performance is impacted by atomizing air flows, suggesting that droplet size is critical even at the expense of penetration to the wall opposite the injector. The results provide a baseline from which to optimize the performance of the LBI for low-power operation.


Author(s):  
Y. G. Li ◽  
R. L. Hales

One of the remedies to reduce the major emissions production of nitric oxide (NOx), carbon monoxide (CO) and unburned hydrocarbon (UHC) from conventional gas turbine engine combustors at both high and low operating conditions without losing its performance and stability is to use variable geometry combustors. This type of combustor configuration provides the possibility of dynamically controlling the airflow distribution of the combustor based on its operating conditions and therefore controlling the combustion in certain lean burn conditions. Two control schemes are described and analyzed in this paper: both are based on airflow control with variable geometry, the second including fuel staging. A model two-spool turbofan engine is chosen in this study to test the effectiveness of the variable geometry combustor and control schemes. The steady and dynamic performance of the turbofan engine is simulated and analyzed using an engine transient performance analysis code implemented with the variable geometry combustor. Empirical correlations for NOx, CO and UHC are used for the estimation of emissions. Some conclusions are obtained from this study: • With variable geometry combustors significant reduction of NOx emissions at high operating conditions and CO and UHC at low operating condition is possible; • Combustion efficiency and stability can be improved at low operating conditions, which is symbolized by the higher flame temperature in the variable geometry combustor; • The introduced correlation between non-dimensional fuel flow rate and air flow ratio to the primary zone is effective and simple in the control of flame temperature; • Circumferential fuel staging can reduce the range of air splitter movement in most of the operating conditions from idle to maximum power and have the great potential to reduce the inlet distortion to the combustor and improve the combustion efficiency; • During transient processes, the maximum moving rate of the hydraulic driven system may delay the air splitter movement but this effect on engine combustor performance is not significant.


Author(s):  
Chi Zhang ◽  
Yuzhen Lin ◽  
Quanhong Xu ◽  
Gaoen Liu

An innovative concept of Tangential Trapped Vortex Combustor (TTVC) applying a swirling flow to eliminate the guide vanes of the compressor and turbine in the future gas turbine engines is presented via theoretical analysis and experimental investigation. In TTVC, the airflow is mostly whirlblast, and the processes of evaporation, mixing, and chemical reaction for the liquid spray combustion take place along the tangential direction. It is shown that the TTVC operation has the potential of improving combustion efficiency, widening combustion stability range, and reducing emissions, mainly due to the effects of trapped vortex, high centrifugal force, and periodical mixing. Experimental results of the ignition and LBO limits in a small 4-cup annular TTVC operating at atmospheric pressure demonstrated that this innovative combustion technology has a good LBO limit performance to meet the requirements of advanced gas turbine engines.


Author(s):  
T. R. Koblish ◽  
R. Schaefer

The attraction of a coal gasification combined cycle system to utility operation lies in its higher efficiencies (pile-to-busbar) relative to competing power generating systems. In order to achieve these higher efficiencies the coal gasification combined cycle combustor/turbine section must provide reliable operation with low or medium Btu gaseous coal derived fuel at turbine inlet temperature levels above 2600°F. Utilization of low Btu gas (LBG) fuel for attainment of temperature levels up to 3000°F in a gas turbine combustor environment presents several unique design and development problems. Because of the extremely high stoichiometric ratios required to attain 3000°F, the management of combustor cooling as well as internal air and low Btu gas fuel flow mixing patterns is considered critical for high combustion efficiency and stability. Equally important is the requirement for long term combustor durability. A unique combustor design concept has been developed to utilize the available heat sink capability of the LBG fuel to adequately cool the combustor walls for long service life. Under a U.S. Department of Energy contract, an LBG fuel cooled combustor was designed for operation with 150 Btu/SCF fuel for use in development of a turbine capable of operating at 3000°F. This paper describes the background combustor technology and test program results with 150 Btu/SCF fuel regarding the combustion stability, efficiency, emissions and burner wall temperature levels for operation up to 3000°F exit gas temperatures and 6 atmospheres.


Author(s):  
Kashyap Patel ◽  
Chaina Ram ◽  
Vishal Rasaniya

Abstract The gas turbine combustion chamber is a vital part of a gas turbine engine. Proper mixing of air in the combustor plays an important role in combustion. Increasing mixing rate is an important factor for better combustion efficiency. The injection of air in crossflow is widely studied over the years. The air injected at an angle in upstream direction gives better mixing by colliding with the crossflow. The computational analysis of the injected jet in cross flow is performed with different angles in the upstream direction. The k-omega SST turbulence model was used to investigate the mixing behavior. The air is injected at different angles and observed that with an increase in angle from 60° to 135°, the rate of mixing and turbulent intensity increased. The jet inclination in the upstream direction greatly influenced the mixing behavior. The jet penetration in perpendicular direction was almost the same for 120° and 135°. But there is added penalty in the form of the pressure loss at the angle 135°. So considering the pressure loss and ease of manufacturing the 120° jet inclination is preferable for better mixing among the four cases studied here. The idea of inclining jet in upstream direction can be implemented on the combustor for increased performance and shorter size.


2003 ◽  
Vol 125 (4) ◽  
pp. 961-971 ◽  
Author(s):  
Y. G. Li ◽  
R. L. Hales

One of the remedies to reduce the major emissions production of nitric oxide NOx, carbon monoxide (CO), and unburned hydrocarbon (UHC) from conventional gas turbine engine combustors at both high and low operating conditions without losing performance and stability is to use variable geometry combustors. This type of combustor configuration provides the possibility of dynamically controlling the airflow distribution of the combustor based on its operating conditions and therefore controlling the combustion in certain lean burn conditions. Two control schemes are described and analyzed in this paper: Both are based on airflow control with variable geometry, the second including fuel staging. A model two-spool turbofan engine is chosen in this study to test the effectiveness of the variable geometry combustor and control schemes. The steady and dynamic performance of the turbofan engine is simulated and analyzed using an engine transient performance analysis code implemented with the variable geometry combustor. Empirical correlations for NOx, CO, and UHC are used for the estimation of emissions. Some conclusions are obtained from this study: (1) with variable geometry combustors significant reduction of NOx emissions at high operating conditions and CO and UHC at low operating condition is possible; (2) combustion efficiency and stability can be improved at low operating conditions, which is symbolized by the higher flame temperature in the variable geometry combustor; (3) the introduced correlation between nondimensional fuel flow rate and air flow ratio to the primary zone is effective and simple in the control of flame temperature; (4) circumferential fuel staging can reduce the range of air splitter movement in most of the operating conditions from idle to maximum power and have the great potential to reduce the inlet distortion to the combustor and improve the combustion efficiency; and (5) during transient processes, the maximum moving rate of the hydraulic driven system may delay the air splitter movement but this effect on engine combustor performance is not significant.


Author(s):  
Rodney H. Hudson

This paper presents a discussion of the investigation of a gas turbine engine to eliminate pressure oscillations which occurred in the combustor. The basic engine configuration and pertinent aspects of the combustor are described. The pressure oscillations were related to variations in the secondary fuel flow rate through the dual-orifice nozzles. The variations in fuel flow rate caused a fluctuation in nozzle spray characteristics which effected combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document