Development of Dry Low-NOx Combustor for 300 kW Class Gas Turbine Applied to Co-Generation Systems

Author(s):  
Yoichiro Ohkubo ◽  
Osamu Azegami ◽  
Hiroshi Sato ◽  
Yoshinori Idota ◽  
Shinichiro Higuchi

A 300 kWe class gas turbine which has a two-shaft and simple-cycle has been developed to apply to co-generation systems. The gas turbine engine is operated in the range of about 30% partial load to 100% load. The gas turbine combustor requires a wide range of stable operations and low NOx characteristics. A double staged lean premixed combustor, which has a primary combustion duct made of Si3N4 ceramics, was developed to meet NOx regulations of less than 80 ppm (corrected at 0% oxygen). The gas turbine with the combustor has demonstrated superior low-emission performance of around 40 ppm (corrected at 0% oxygen) of NOx, and more than 99.5% of combustion efficiency between 30% and 100% of engine load. Endurance testing has demonstrated stable high combustion performance over 3,000 hours in spite of a wide compressor inlet air temperature (CIT) range of 5 to 35 degree C.. While increasing the gas generator turbine speed, the flow rate of primary fuel was controlled to hold a constant equivalence ratio of around 0.5 in the CIT range of more than 15 C. The output power was also decreased while increasing the CIT, in order to keep a constant temperature at the turbine inlet. The NOx decreases in the CIT range of more than 15 C. On the other hand, the NOx increases in the CIT range of less than 15 C when the output power was kept a constant maximum power. As a result, NOx emission has a peak value of about 40 ppm at 15 C.

2019 ◽  
Vol 18 (2) ◽  
pp. 52-61
Author(s):  
A. V. Grigoriev ◽  
A. A. Kosmatov ◽  
О. A. Rudakov ◽  
A. V. Solovieva

The article substantiates the necessity of designing an optimal gas generator of a gas turbine engine. The generator is to provide coordinated joint operation of its units: compressor, combustion chamber and compressor turbine with the purpose of reducing the period of development of new products, improving their fuel efficiency, providing operability of the blades of a high-temperature cooled compressor turbine and meeting all operational requirements related to the operation of the optimal combustion chamber including a wide range of stable combustion modes, high-altitude start at subzero air and fuel temperature conditions and prevention of the atmosphere pollution by toxic emissions. Methods of optimizing the parameters of coordinated joint operation of gas generator units are developed. These parameters include superficial flow velocities in the boundary interface cross sections between the compressor and the combustion chamber, as well as between the combustion chamber and the compressor turbine. The effective efficiency of the engine thermodynamic cycle is the optimization target function. The required depth of the turbine blades cooling is a functional constraint evaluated with account for calculations of irregularity and instability of the gas temperature field and the actual flow turbulence intensity at the blades’ inlet. We carried out theoretical analysis of the influence of various factors on the gas flow that causes changes in the flow total pressure in the channels of the gas generator gas dynamic model, i.e. changes in the efficiencies of its units. It is shown that the long period (about five years) of the engine final development time, is due to the necessity to perform expensive full-scale tests of prototypes, in particular, it is connected with an incoordinate assignment in designing the values of the flow superficial velocities in the boundary sections between the gas generator units. Designing of an optimal gas generator is only possible on the basis of an integral mathematical model of an optimal combustion chamber.


1978 ◽  
Author(s):  
J. R. Strother

Detroit Diesel Allison (DDA) Division of General Motors Corporation, has developed a 7000-shp class gas turbine engine for industrial use. The engine uses proven modern technology which results in low-fuel consumption over a wide range of power and a compact installation envelope. Approximately 5000 hr of performance and endurance testing have been accumulated to date. Testing is continuing at DDA and the first-field installation was completed in September 1977 in a stationary air compressor application. It is anticipated that 10,000 hr of engine test experience will be gained prior to production unit availability in 1978. This paper discusses the mechanical arrangement, performance, control system, installation and maintenance features, and status of the Model 570 engine.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


Author(s):  
A. Karl Owen ◽  
Anne Daugherty ◽  
Doug Garrard ◽  
Howard C. Reynolds ◽  
Richard D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration results and the results of the trade-off study.


2020 ◽  
Author(s):  
J. Fajardo ◽  
D. Barreto ◽  
T. Castro ◽  
I. Baldiris

Abstract It is known that high temperatures adversely affect the performance of gas turbines, but the effect of the combination of atmospheric conditions (temperature and relative humidity -RH-) on the operation of this type of system is unknown. In this work the effects of atmospheric conditions on the energy and exergy indicators of a power plant with gas turbine were studied. The indicators studied were the mass flow, the specific work consumed by the compressor, specific work produced by the turbine, the combustion gas temperature, the NO concentration, the net output power, the thermal efficiency, the heat rate, the specific consumption of fuel, the destruction of exergy and exergy efficiency. Among the results, it is noted that for each degree celsius that reduces the temperature of the air at the compressor inlet at constant relative humidity on average, the mass flow of dry air increases by 0.27 kg/s, the specific work consumed by the compressors decreases by 0.45%, the output power increases by 1.17% and the thermal efficiency increases by 0.8%, the exergy destruction increases by 0.72% and the exergy efficiency increases by 0.81%. In addition, humidity changes relative to high temperatures are detected more significantly than at low temperatures. The power plant studied is installed in Cartagena, Colombia and since it is not operating in the design environmental conditions (15 °C and 60% relative humidity) it experiences a loss of output power of 6140 kW and a drop in thermal efficiency of 5.12 %. These results allow considering the implementation of air cooling technologies at the compressor inlet to compensate for the loss of power at atmospheric air conditions.


Author(s):  
C. Rodgers

A small semi-closed gas turbine was designed, fabricated, and tested to demonstrate the cycle the cycle feasibility with exhaust gas recirculation. The demonstrator unit comprised a low pressure spool compressor and turbine supercharging a high pressure spool compressor and turbine, whose exhaust passed through a recuperator, and was subsequently split, one half being recirculated to the high pressure spool compressor inlet via an intercooler, and the remaining half expanded across the low pressure spool turbine. The design and fabrication phases proceeded on schedule but commencement of engine development testing encountered mechanical difficulties. These were eventually resolved and shakedown testing of the demonstrator accomplished prior to final contractual delivery. The demonstration program was funded under a NASA LeRc contract NAS3-27396.


Author(s):  
F. J. Suriano ◽  
R. D. Dayton ◽  
Fred G. Woessner

The Garrett Turbine Engine Company, a Division of the Garrett Corporation, authorized under Air Force Contract F33615-78-C-2044 and Navy Contract N00140-79-C-1294, has been conducting development work on the application of gas-lubricated hydrodynamic journal foil bearings to the turbine end of gas turbine engines. Program efforts are directed at providing the technology base necessary to utilize high-temperature foil bearings in future gas turbine engines. The main thrust of these programs was to incorporate the designed bearings, developed in test rigs, into test engines for evaluation of bearing and rotor system performance. The engine test programs included a full range of operational tests; engine thermal environment, endurance, start/stops, attitude, environmental temperatures and pressures, and simulated maneuver bearing loadings. An 88.9 mm (3.5-inch) diameter journal foil bearing, operating at 4063 RAD/SEC (38,800 rpm), has undergone test in a Garrett GTCP165 auxiliary power unit. A 44.4 mm (1.75-inch) diameter journal foil bearing, operating at 6545 RAD/SEC (62,500 rpm) has undergone test in the gas generator of the Garrett Model JFS190. This paper describes the engine test experience with these bearings.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Sign in / Sign up

Export Citation Format

Share Document