The NOx Emission Levels of Unconventional Fuels for Gas Turbines

1977 ◽  
Vol 99 (4) ◽  
pp. 575-579
Author(s):  
W. S. Y. Hung

An experimentally verified NOx emission model for gas turbines has been reported previously. The model has been modified to determine the NOx emission levels of various fuels as compared to No. 2 distillate oil. The NOx emission levels of various conventional and unconventional gas turbine fuels of interest are predicted. The predicted NOx emission levels for these fuels, including methanol, ethanol, propane, and hydrogen, are in good agreement with available laboratory and field data from stationary, aircraft, and automotive gas turbine combustors. The predicted results should be applicable to other fuel-lean, heterogeneous combustion systems.

Author(s):  
W. S. Y. Hung

An analytical model has been developed to simulate the thermal NOx emission processes in various gas turbine combustors for a variety of fuels. The NOx emissions predicted by the model are in excellent agreement with available laboratory and field data. Its capability to simulate the water injection process accurately has been demonstrated previously. Comprehensive understanding of the NOx emission processes in gas turbine combustors has been gained through the current analytical studies. NOx emissions as influenced by ambient humidity, changes in combustor geometry, type of fuel used and changes in operating parameters can now be evaluated quantitatively through a priori prediction and have been verified by available laboratory and field data. The analytical model has also been demonstrated to be a powerful guidance tool in directing the experimental testing program in an effort to reduce NOx emissions from gas turbine combustors.


Author(s):  
Wilfred S. Y. Hung ◽  
Alan Campbell

The advent of dry, low-emissions combustion systems for gas turbine applications and the trend towards requiring emissions monitoring and lower NOx limits by regulatory agencies, have created renewed interests in the uncertainty of NOx emissions measurements. This paper addresses the uncertainty of measuring NOx emissions from gas turbines in the field, including gas turbines equipped with conventional combustion systems, with or without water injection, with dry, low-emissions combustion systems and with exhaust clean-up systems. The sources of errors, using current state-of-the-art instruments, in field emissions testing or continuous emission monitoring of gas turbines to meet specific emission (ppmvd @ 15% O2) as well as mass emission rate (kg/hr) limits are identified. The uncertainty of measuring NOx emissions from gas turbines is estimated and compared with Geld data. The effect of NOx emission levels on measurement uncertainty is also addressed. The minimus NOx measurement uncertainty is determined and is in good agreement with what is currently allowed by regulatory agencies.


1977 ◽  
Vol 99 (4) ◽  
pp. 631-637 ◽  
Author(s):  
S. E. Mumford ◽  
W. S. Y. Hung ◽  
P. P. Singh

An experimentally verified NOx emission model has been described previously to predict accurately the NOx emission characteristics of conventional gas turbine combustors as well as laboratory scaled premixed combustor. Experimental data and analyses indicated that a hybrid combustor, which utilizes features of both the conventional and the premixed combustors, has the potential to be a viable low NOx emission combustor. Initial calculations indicated low NOx emission levels for the hybrid combustor. This hybrid combustion concept was tested in the laboratory. The measured NOx emissions from this laboratory-scaled hybrid combustor were in excellent agreement with the analytical predictions. The emissions of carbon monoxide and unburned hydrocarbons were also measured. It has been concluded from an analysis of the measured data that a gas turbine combustor, designed with the hybrid combustion concept, has the best potential to be a near-term viable combustor in meeting the EPA proposed gas turbine emission regulations. The experimental effort thus far has focused on the emission characteristics. Other areas of the design, such as the vaporization of liquid fuels, require additional development work prior to the incorporation of this concept into a viable system for an engine application.


Author(s):  
Toshiaki Sakurazawa ◽  
Takeo Oda ◽  
Satoshi Takami ◽  
Atsushi Okuto ◽  
Yasuhiro Kinoshita

This paper describes the development of the Dry Low Emission (DLE) combustor for L30A gas turbine. Kawasaki Heavy Industries, LTD (KHI) has been producing relatively small-size gas turbines (25kW to 30MW class). L30A gas turbine, which has a rated output of 30MW, achieved the thermal efficiency of more than 40%. Most continuous operation models use DLE combustion systems to reduce the harmful emissions and to meet the emission regulation or self-imposed restrictions. KHI’s DLE combustors consist of three burners, a diffusion pilot burner, a lean premix main burner, and supplemental burners. KHI’s proven DLE technologies are also adapted to the L30A combustor design. The development of L30 combustor is divided in four main steps. In the first step, Computational Fluid Dynamics (CFD) analyses were carried out to optimize the detail configuration of the combustor. In a second step, an experimental evaluation using single-can-combustor was conducted in-house intermediate-pressure test facility to evaluate the performances such as ignition, emissions, liner wall temperature, exhaust temperature distribution, and satisfactory results were obtained. In the third step, actual pressure and temperature rig tests were carried out at the Institute for Power Plant Technology, Steam and Gas Turbines (IKDG) of Aachen University, achieving NOx emission value of less than 15ppm (O2=15%). Finally, the L30A commercial validation engine was tested in an in-house test facility, NOx emission is achieved less than 15ppm (O2=15%) between 50% and 100% load operation point. L30A field validation engine have been operated from September 2012 at a chemical industries in Japan.


Author(s):  
R. A. Dalla Betta ◽  
J. C. Schlatter ◽  
S. G. Nickolas ◽  
D. K. Yee ◽  
T. Shoji

A catalytic combustion system has been developed which feeds full fuel and air to the catalyst but avoids exposure of the catalyst to the high temperatures responsible for deactivation and thermal shock fracture of the supporting substrate. The combustion process is initiated by the catalyst and is completed by homogeneous combustion in the post catalyst region where the highest temperatures are obtained. This has been demonstrated in subscale test rigs at pressures up to 14 atmospheres and temperatures above 1300°C (2370°F). At pressures and gas linear velocities typical of gas turbine combustors, the measured emissions from the catalytic combustion system are NOx < 1 ppm, CO < 2 ppm and UHC < 2 ppm, demonstrating the capability to achieve ultra low NOx and at the same time low CO and UHC.


Author(s):  
Giuseppe Fabio Ceschini ◽  
Lucrezia Manservigi ◽  
Giovanni Bechini ◽  
Mauro Venturini

Anomaly detection and classification is a key challenge for gas turbine monitoring and diagnostics. To this purpose, a comprehensive approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (named DCIDS) was developed by the authors in previous papers. The methodology consists of an Anomaly Detection Algorithm (ADA) and an Anomaly Classification Algorithm (ACA). The ADA identifies anomalies according to three different levels of filtering. Anomalies are subsequently analyzed by the ACA to perform their classification, according to time correlation, magnitude and number of sensors in which an anomaly is contemporarily identified. The performance of the DCIDS approach is assessed in this paper based on a significant amount of field data taken on several Siemens gas turbines in operation. The field data refer to six different physical quantities, i.e. vibration, pressure, temperature, VGV position, lube oil tank level and rotational speed. The analyses carried out in this paper allow the detection and classification of the anomalies and provide some rules of thumb for field operation, with the final aim of identifying time occurrence and magnitude of faulty sensors and measurements.


Author(s):  
Krzysztof Kostrzewa ◽  
Berthold Noll ◽  
Manfred Aigner ◽  
Joachim Lepers ◽  
Werner Krebs ◽  
...  

The operation envelope of modern gas turbines is affected by thermoacoustically induced combustion oscillations. The understanding and development of active and passive means for their suppression is crucial for the design process and field introduction of new gas turbine combustion systems. Whereas the propagation of acoustic sound waves in gas turbine combustion systems has been well understood, the flame induced acoustic source terms are still a major topic of investigation. The dynamics of combustion processes can be analyzed by means of flame transfer functions which relate heat release fluctuations to velocity fluctuations caused by a flame. The purpose of this paper is to introduce and to validate a novel computational approach to reconstruct flame transfer functions based on unsteady excited RANS simulations and system identification. Resulting time series of velocity and heat release are then used to reconstruct the flame transfer function by application of a system identification method based on Wiener-Hopf formulation. CFD/SI approach has been applied to a typical gas turbine burner. 3D unsteady simulations have been performed and the flame transfer results have been validated by comparison to experimental data. In addition the method has been benchmarked to results obtained from sinusoidal excitations.


Author(s):  
Jeffrey A. Benoit ◽  
Charles Ellis ◽  
Joseph Cook

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-comissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. One Las Vegas Nevada, USA operator, NV Energy, with four (4) natural gas fired W501B6 Combined Cycle units at their Edward W. Clark Generating Station, was in this situation in 2006. The units, originally configured with diffusion flame combustion systems, were permitted at 103 ppm NOx with regulatory mandates to significantly reduce NOx emissions to below 5ppm by the end of 2009. Studies were conducted by the operator to evaluate the economic viability of using a Selective Catalytic Reduction (SCR) system, which would have forced significant modifications to the exhaust system and heat recovery steam generator (HRSG), or convert the turbines to operate with dry low-emissions combustion systems. Based on life cycle cost and installation complexity, the ultra-low emission combustion system was selected. This technical paper focuses on a short summary of the end user considerations in downselecting options, the ultra low emissions technology and key features employed to achieve these low emissions, an overview of the conversion scope and a review and description of the control technology employed. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
Stefano Cocchi ◽  
Michele Provenzale ◽  
Gianni Ceccherini

An experimental test campaign, aimed to provide a preliminary assessment of the fuel flexibility of small power gas turbines equipped with Dry Low NOx (DLN) combustion systems, has been carried over a full-scale GE10 prototypical unit, located at the Nuovo-Pignone manufacturing site, in Florence. Such activity is a follow-up of a previous experimental campaign, performed on the same engine, but equipped with a diffusive combustion system. The engine is a single shaft, simple cycle gas turbine designed for power generation applications, rated for 11 MW electrical power and equipped with a DLN silos type combustor. One of the peculiar features of such combustion system is the presence of a device for primary combustion air staging, in order to control flame temperature. A variable composition gaseous fuel mixture has been obtained by mixing natural gas with CO2 up to about 30% vol. inerts concentration. Tests have been carried over without any modification of the default hardware configuration. Tests performed aimed to investigate both ignition limits and combustors’ performances, focusing on hot parts’ temperatures, pollutant emissions and combustion driven pressure oscillations. Results indicate that ignition is possible up to 20% vol. inerts concentration in the fuel, keeping the fuel flow during ignition at moderately low levels. Beyond 20% vol. inerts, ignition is still possible increasing fuel flow and adjusting primary air staging, but more tests are necessary to increase confidence in defining optimal and critical values. Speed ramps and load operation have been successfully tested up to 30% vol. inerts concentration. As far as speed ramps, the only issue evidenced has been risk of flameout, successfully abated by rescheduling combustion air staging. As far as load operation, the combustion system has proven to be almost insensitive to any inerts concentration tested (up to 30% vol.): the only parameter significantly affected by variation in CO2 concentration has been NOx emission. As a complementary activity, a simplified zero-dimensional model for predicting NOx emission has been developed, accounting for fuel dilution with CO2. The model is based on main turbine cycle and DLN combustion system controlling parameters (i.e., compressor pressure ratio, firing temperature, pilot fuel and primary air staging), and has been tuned achieving good agreement with data collected during the test campaign.


Author(s):  
Tatsuo Fujii ◽  
Takakazu Uenaka ◽  
Hitoshi Masuo

The first Kawasaki-ABB GT13E2 gas turbine began operating at Kawasaki Gas Turbine Research Center (KGRC) in Sodegaura city, Japan in January 1994. This facility is a simple-cycle power station and is operated in DSS (Daily Start and Stop) operation mode as a peaking unit, and its output electricity is delivered to Tokyo Electric Power Company (TEPCO). The GT13E2 gas turbine at KGRC was manufactured jointly by Kawasaki Heavy Industries (KHI) and Asea Brown Boveri (ABB). KHI and ABB have a joint test program with this facility to research for high reliability, high performance and low emission for the GT13E2 and future gas turbines. The performance of the KGRC GT13E2 has been monitored continuously. It was found from these monitored data that the thermal efficiency has been maintained at a high level and could be recovered by compressor washing when the compressor was fouled. Several factors which influence NOx emissions were studied on the gas turbine, and it was found that atmospheric humidity has a major influence on NOx emissions. Also other factor such as the position of the variable inlet guide vanes (VIGV) and fuel gas flow through each burner of the combustor were adjusted to reduce NOx emission. As a result, NOx emission from the KGRC GT13E2 has been maintained at a very low level. Reliability, availability and maintainability (RAM) has been evaluated by Operational Reliability Analysis Program (ORAP®) of Strategic Power Systems, Inc. (SPS) in order to identify and improve RAM performance of the GT13E2 at KGRC. These analyses made it clear what kind of outage had an impact on the reliability, availability and starting reliability of the KGRC GT13E2 and appropriate actions have increased the starting reliability. This paper describes operating experiences of the KGRC GT13E2 including performance, emissions and RAM performance.


Sign in / Sign up

Export Citation Format

Share Document