The Influence on the Meridional Impeller Shape on the Energy-Transfer in Centrifugal Compressors

1980 ◽  
Author(s):  
K. Bammert ◽  
M. Rautenberg ◽  
P. Knapp

Three radial flow impellers were tested having an elliptic blade shape and identical blade geometry at inlet and exit but different shapes of the meridional contours. The compressor maps with pressure ratios up to 2.9:1 are compared using time-dependent measurements of the static pressure at the shroud and of the flow angles closely downstream of the impeller. From these measurements, the influence of impeller shap on the jet-and-wake flow is discussed. It is shown that with increasing impeller length, the wake zone at the suction side of the blades can be only partially influenced and friction losses become dominant with respect to compressor performance. A smooth curvature of the meridional cross section of the impeller channel leads to a better jet-wake ratio at impeller exit. Accordingly, the performance characteristic shows higher values especially when the mass flow is increased.

Author(s):  
Fengchao Li ◽  
Honggang Fan ◽  
Zhengwei Wang ◽  
Naixiang Chen

In this paper the Boundary Vorticity Dynamics Theory is applied to optimize the runner blade shape of a bulb tubular turbine, based on a three-dimensional coupled design model. The initial spatial runner blades and guide vanes are designed together with the simultaneous equations solved in the flow domain involving them. Since the wake flow behavior of guide vanes influencing the inflow condition of runner blades is taken account of, compared with that on separate design method, the static pressure distribution obtained on coupled model is improved near the inlet of the blades. Thus the effective head becomes higher and the runner’s efficiency rises. To improve the performance on the design point, the boundary vorticity flux (BVF) on the runner blade surfaces is simulated to analyze its effect to the unit output emphatically. The runner blade shape is modified by changing the prescribed distribution of swirl according to the diagnosed position where the flow behavior is defective. The static pressure on optimized runner blades varies indistinctly, which is difficult to estimate the flow behavior. Nevertheless the BVF distribution indicates that near the hub of the pressure surface the negative effect on the output becomes weak, and negative region near the leading edge reduces obviously in area, which results in the further rise of runner’s efficiency. The result shows that the BVF distribution on blade surfaces can more potently reflect the performance of tubular turbines and provide reliable solution for shape optimization.


2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.


Author(s):  
Hao Chang ◽  
Weidong Shi ◽  
Wei Li ◽  
Jianrui Liu ◽  
Ling Zhou ◽  
...  

In order to study the influence rule of wrap angle of blade on the internal flow field and hydraulic performance of double suction pump, 5 kinds of wrap angles of blade with 100°, 110°, 120°, 130° and 140° are designed in this paper. The turbulence model and the grid type are analyzed, the performance of ES350-575 double suction pump is obtained by employ the software CFX. The static pressure and velocity distributions in the cross-section are analyzed. Therefore, the optimal model is obtained, and the relevant external characteristic test is conducted. The result shows that the reasonable increase of the wrap angle of blade can enhance the performance of the pump effectively, which can improve the static pressure and velocity distributions of the internal flow field.


1965 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. J. Baker

This paper presents the results of heat transfer measurements taken on a two-dimensional supersonic parallel diffuser. The wall static pressure distributions and the corresponding heat transfer coefficients and fluxes have been measured for a range of initial total pressures. The effects of varying the area of the diffuser cross-section for the same upstream generating nozzle have also been studied. Mach number profiles measured at sections along the diffuser show that in the presence of shock waves and a positive pressure gradient the flow is very much underdeveloped. In general, the mean level of heat transfer is found to be much greater than that predicted by conventional empirical equations for subsonic pipe flows with zero pressure gradient. Further, on comparison between normal and oblique shock diffusion the former is found to give the higher level of heat transfer.


Author(s):  
Mohammad Arabnia ◽  
Vadivel K. Sivashanmugam ◽  
Wahid Ghaly

This paper presents a practical and effective optimization approach to minimize 3D-related flow losses associated with high aerodynamic inlet blockage by re-stacking the turbine rotor blades. This approach is applied to redesign the rotor of a low speed subsonic single-stage turbine that was designed and tested in DLR, Germany. The optimization is performed at the design point and the objective is to minimize the rotor pressure loss coefficient as well as the maximum von Mises stress while keeping the same design point mass flow rate, and keeping or increasing the rotor blade first natural frequency. A Multi-Objective Genetic Algorithm (MOGA) is coupled with a Response Surface Approximation (RSA) of the Artificial Neural Network (ANN) type. A relatively small set of high fidelity 3D flow simulations and structure analysis are obtained using ANSYS Workbench Mechanical. That set is used to train and to test the ANN models. The stacking line is parametrically represented using a quadratic rational Bezier curve (QRBC). The QRBC parameters are directly related to the design variables, namely the rotor lean and sweep angles and the bowing parameters. Moreover, it results in eliminating infeasible shapes and in reducing the number of design variables to a minimum while providing a wide design space for the blade shape. The aero-structural optimization of the E/TU-3 turbine proved successful, the rotor pressure loss coefficient was reduced by 9.8% and the maximum von Mises stress was reduced by 36.7%. This improvement was accomplished with as low as four design variables, and is attributed to the reduction of 3D-related aerodynamic losses and the redistribution of stresses from the hub trailing edge region to the suction side maximum thickness area. The proposed parametrization is a promising one for 3D blade shape optimization involving several disciplines with a relatively small number of design variables.


Author(s):  
Michal Hoznedl ◽  
Antonín Živný ◽  
Aleš Macálka ◽  
Robert Kalista ◽  
Kamil Sedlák ◽  
...  

The paper presents the results of measurements of flow parameters behind the last stage of a 1090 MW nominal power steam turbine in a nuclear power plant. The results were obtained by traversing a pneumatic probe at a distance of about 100 mm from the trailing edges of the LSB (Last Stage Blade). Furthermore, both side walls as well as the front wall of one flow of the LP (Low Pressure) exhaust hood were fitted with a dense net of static pressure taps at the level of the flange of the turbine. A total of 26 static pressures were measured on the wall at the output from the LP exhaust hood. Another 14 pressures were measured at the output from the condenser neck. The distribution of static pressures in both cross sections for full power and 600 and 800 MW power is shown. Another experiment was measured pressure and angle distribution using a ball pneumatic probe in the condenser neck area in a total of four holes at a distance up to 5 metres from the neck wall. The turbine condenser is two-flow design. In one direction perpendicular to the axis of the turbine cold cooling water comes, it heats partially. It then reverses and it heats to the maximum temperature again. The different temperature of cooling water in the different parts of the output cross section should influence the distribution of the output static pressure. Differences in pressures may cause problems with uneven load of the tube bundles of the condenser as well as problems with defining the influential edge output condition in CFD simulations of the flow of the cold end of the steam turbine Due to these reasons an extensive 3D CFD computation, which includes one stator blade as well as all moving blades of the last stage, a complete diffuser, the exhaust hood and the condenser neck, has been carried out. Geometry includes all reinforcing elements, pipes and heaters which could influence the flow behaviour in the exhaust hood and its pressure loss. Inlet boundary conditions were assumed for the case of both computations from the measurement of the flow field behind the penultimate stage. The outlet boundary condition was defined in the first case by an uneven value of the static pressure determined by the change of the temperature of cooling water. In the second case the boundary condition in accordance with the measurement was defined by a constant value of the static pressure along all the cross section of the output from the condenser neck. Results of both CFD computations are compared with experimental measurement by the distribution of pressures and other parameters behind the last stage.


1997 ◽  
Vol 341 ◽  
pp. 77-99 ◽  
Author(s):  
M. RIEUTORD ◽  
L. VALDETTARO

The structure and spectrum of inertial waves of an incompressible viscous fluid inside a spherical shell are investigated numerically. These modes appear to be strongly featured by a web of rays which reflect on the boundaries. Kinetic energy and dissipation are indeed concentrated on thin conical sheets, the meridional cross-section of which forms the web of rays. The thickness of the rays is in general independent of the Ekman number E but a few cases show a scaling with E1/4 and statistical properties of eigenvalues indicate that high-wavenumber modes have rays of width O(E1/3). Such scalings are typical of Stewartson shear layers. It is also shown that the web of rays depends on the Ekman number and shows bifurcations as this number is decreased.This behaviour also implies that eigenvalues do not evolve smoothly with viscosity. We infer that only the statistical distribution of eigenvalues may follow some simple rules in the asymptotic limit of zero viscosity.


Sign in / Sign up

Export Citation Format

Share Document