Control of Self-Excited Flow Oscillations in Vaneless Diffuser of Centrifugal Compression Systems

Author(s):  
A. N. Abdelhamid

Experiments were conducted to evaluate the effectiveness of axisymmetric diffuser exit throttle in delaying the occurrence of self-excited flow oscillation in vaneless diffusers. Sharp edge rings were installed at diffuser exit in order to change the exit flow area. Tests were carried out with the rings attached to one or both of the diffuser walls. Steady and unsteady flow measurements were used to determine the flow field in the diffuser at the onset of the flow oscillations. Results showed that the occurrence of flow oscillation was continuously delayed as the diffuser exit flow area was reduced for all these configurations and impeller speeds. Comparison between the performance of the compression system with and without diffuser exit blockage indicated that although large losses occur at high flow rates, the use of diffuser exit rings resulted in overall diffuser performance improvement at low flow rates. Retractable diffuser exit rings would therefore be ideal for centrifugal compression systems with vaneless diffuser.

2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


1983 ◽  
Vol 26 ◽  
Author(s):  
Aaron Barkatt ◽  
William Sousanpour ◽  
Alisa Barkatt ◽  
Morad A. Boroomand ◽  
Pedro B. Macedo

ABSTRACTLeach tests carried out on SRL TDS-131 Defense Waste Class indicate that at high flow rates the controlling mechanism is simple corrosion. The matrix elements (Si, Al) are leached out at rates similar to those of the leaching of the alkalis and of boron, and the leaching process is nearly linear with time. At slow flow rates (below 1 m/yr) leaching becomes controlled by the build-up of a protective layer. Al and most of the Si remain in the leached surface layer. The leach rates decrease in the course of the test before leveling off at constant values which are almost inversely proportional to the contact time, indicating that leachate concentrations have become solubility-limited. The low concentrations observed at this stage indicate the formation of alteration products.


2019 ◽  
Vol 21 (27) ◽  
pp. 14605-14611 ◽  
Author(s):  
R. Moosavi ◽  
A. Kumar ◽  
A. De Wit ◽  
M. Schröter

At low flow rates, the precipitate forming at the miscible interface between two reactive solutions guides the evolution of the flow field.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alojz Ihan ◽  
Stefan Grosek ◽  
David Stubljar

Background. The aim of our study was to evaluate the damaging impact of characteristics of the central venous catheters (CVCs) on red blood cells. Methods. CVCs from three different manufacturers were analyzed, including the presence of coating, tunnel geometry, length, lumen diameter, and number of lumens with two respective flow rates (33 mL/min and 500 mL/min). Blood cell damage was defined by analyzing microparticle (MP) and hematologic analysis. MPs were isolated by ultracentrifugation of erythrocyte concentrate and analyzed on a flow cytometer. Results. Characteristics of catheters were not associated with blood cell damage at a low flow rate but showed an effect with a high flow rate. CVCs with a polyhexanide methacrylate coating have caused statistically less blood cell damage than noncoated CVCs. The length of lumens, diameter, and geometry of the tunnel showed no differences in blood cell damage. Meanwhile, the number of lumens was predicted to have a greater effect on the erythrocyte damage, which was revealed with the formation of MPs and hematological parameters. CVCs with five lumens caused significantly less damage to the blood cells than CVCs with a single lumen. Moreover, a high flow rate of 500 mL/min caused less damage to the blood cells than a low rate of 33 mL/min. Conclusion. Properties of CVCs are an important factor for quality patient care, especially when transfusing blood with high flow rates, as we want to provide a patient with high-quality blood with as few damaged cells as possible.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Qian-Qian Wang ◽  
Bao-Hong Ping ◽  
Qing-Bo Xu ◽  
Wen Wang

This study investigates rheological effects of blood on steady flows in a nonplanar distal end-to-side anastomosis. The shear-thinning behavior of blood is depicted by a Carreau–Yasuda model and a modified power-law model. To explore effects of nonplanarity in vessel geometry, a curved bypass graft is considered that connects to the host artery with a 90deg out-of-plane curvature. Navier–Stokes equations are solved using a finite volume method. Velocity and wall shear stress (WSS) are compared between Newtonian and non-Newtonian fluids at different flow rates. At low flow rate, difference in axial velocity profiles between Newtonian and non-Newtonian fluids is significant and secondary flows are weaker for non-Newtonian fluids. At high flow rate, non-Newtonian fluids have bigger peak WSS and WSS gradient. The size of the flow recirculation zone near the toe is smaller for non-Newtonian fluids and the difference is significant at low flow rate. The nonplanar bypass graft introduces helical flow in the host vessel. Results from the study reveal that near the bed, heel, and toe of the anastomotic junction where intimal hyperplasia occurs preferentially, WSS gradients are all very big. At high flow rates, WSS gradients are elevated by the non-Newtonian effect of blood but they are reduced at low flow rates. At these locations, blood rheology not only affects the WSS and its gradient but also secondary flow patterns and the size of flow recirculation near the toe. This study reemphasizes that the rheological property of blood is a key factor in studying hemodynamic effects on vascular diseases.


1995 ◽  
Vol 117 (4) ◽  
pp. 602-608 ◽  
Author(s):  
A. Pinarbasi ◽  
M. W. Johnson

Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16 percent below and an 11 percent above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle is used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Large axial flow fans are used in forced draft air cooled heat exchangers (ACHEs). Previous studies have shown that adverse operating conditions cause certain sectors of the fan, or the fan as a whole to operate at very low flow rates, thereby reducing the cooling effectiveness of the ACHE. The present study is directed towards the experimental and numerical analyses of the flow in the vicinity of an axial flow fan during low flow rates. This is done to obtain the global flow structure up and downstream of the fan. A near-free-vortex fan, designed for specific application in ACHEs, is used for the investigation. Experimental fan testing was conducted in a British Standard 848, type A fan test facility, to obtain the fan characteristic. Both steady-state and time-dependent numerical simulations were performed, depending on the operating condition of the fan, using the Realizable k-ε turbulence model. Good agreement is found between the numerically and experimentally obtained fan characteristic data. Using data from the numerical simulations, the time and circumferentially averaged flow field is presented. At the design flow rate the downstream fan jet mainly moves in the axial and tangential direction, as expected for a free-vortex design criteria, with a small amount of radial flow that can be observed. As the flow rate through the fan is decreased, it is evident that the down-stream fan jet gradually shifts more diagonally outwards, and the region where reverse flow occur between the fan jet and the fan rotational axis increases. At very low flow rates the flow close to the tip reverses through the fan, producing a small recirculation zone as well as swirl at certain locations upstream of the fan.


2011 ◽  
Vol 8 (1) ◽  
pp. 1827-1860 ◽  
Author(s):  
N. Y. Krakauer ◽  
M. Temimi

Abstract. The pattern of streamflow recession after rain events offers clues about the relationship between watershed runoff (observable as river discharge) and water storage (not directly observable) and can help in water resource assessment and prediction. However, it has not been systematically analyzed across flow rates or related to independent assessments of terrestrial water storage. We characterized the streamflow recession pattern in 61 relatively undisturbed small watersheds (1–100 km2) across the coterminous United States with multiyear records of hourly streamflow from automated gauges. We used the North American Regional Reanalysis (NARR) to help identify periods where precipitation, snowmelt, and evaporation were small compared to streamflow. The order of magnitude of the recession timescale increases from 1 day at high flow rates (~1 mm/h) to 10 days at low flow rates (~0.01 mm/h), leveling off at low flow rates. There is significant variability in the recession timescale at a given flow rate between basins, correlated with climate and geomorphic variables such as the ratio of mean streamflow to precipitation and soil water infiltration capacity. Stepwise multiple regression was used to construct a six-variable predictive model that explained some 80% of the variance in recession timescale at high flow rates and 30–50% at low flow rates. Seasonal and interannual variability in storage shows similar time evolution to but is up to a factor of 10 smaller than regional-scale water storage variability estimated from GRACE satellite gravity data and from land surface modeling forced by observed meteorology. The discrepancy may point to a "disconnection" between the conceptual pool that supplies streamflow during dry periods and other dynamic pools such as soil moisture and deep groundwater.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Hiroshi Yokoyama ◽  
Katsutake Minowa ◽  
Kohei Orito ◽  
Masahito Nishikawara ◽  
Hideki Yanada

Abstract Small axial fans are used for cooling electronic equipment and are often installed in a casing with various slits. Direct aeroacoustic simulations and experiments were performed with different casing opening ratios to clarify the effects of the flow through the casing slits on the flow field and acoustic radiation around a small axial fan. Both the predicted and measured results show that aerodynamic performance deteriorates at and near the design flow rate and is higher at low flow rates by completely closing the casing slits compared with the fan in the casing with slits. The predicted flow field shows that the vortical structures in the tip vortices are spread by the suppression of flow through the slits at the design flow rate, leading to the intensification of turbulence in the blade wake. Moreover, the pressure fluctuations on the blade surface are intensified, which increases the aerodynamic sound pressure level. The suppression of the outflow of pressurized air through the downstream part of the slits enhances the aerodynamic performance at low flow rates. Also, the predicted surface streamline at the design flow rate shows that air flows along the blade tip for the fan with slits, whereas the flow toward the blade tip appears for the fan without slits. As a result, the pressure distributions on the blade and the torque exerted on the fan blade are affected by the opening ratio of slits.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


Sign in / Sign up

Export Citation Format

Share Document