scholarly journals A New Generation T56 Turboprop Engine

Author(s):  
W. L. McIntire

The focus of the T56 Series IV turboprop engine development program is to improve power and fuel consumption through incorporation of demonstrated technology improvements while retaining the long term durability and cost effective design of the T56 family. The T56-A-427, the Navy Series IV derivative of the 5000 shp (3728.5 kW) class T56 turboprop engine, resulted from over ten years of technology development via Advanced Turbine Engine Gas Generator (ATEGG), Joint Technology Demonstrator Engine (JTDE), and advanced component programs at Allison Gas Turbine Operations. An example of government and industry cooperation to transfer advanced gas turbine technology is the Air Force Engine Model Derivative Program (EMDP). The initial full-scale demonstration in this program confirmed a 10–1/2% reduction in specific fuel consumption (sfc) and a power growth of 21% in the basic T56 frame. Continued early demonstrations and development by IR&D, Navy funds, and Allison discretionary funds showed a further sfc reduction to 13% and power increase of 28%. The full-scale development program is now underway to provide production engines in late 1986. Engines will be available for the Grumman E-2 and C-2 aircraft, with follow-on adaptions for Lockheed C-130/L100 and P-3 aircraft, and generator sets for DD 963, DDG 993, CG 47 and DDG 51 warships.

Author(s):  
A. Karl Owen ◽  
Anne Daugherty ◽  
Doug Garrard ◽  
Howard C. Reynolds ◽  
Richard D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration results and the results of the trade-off study.


1999 ◽  
Vol 121 (3) ◽  
pp. 384-393 ◽  
Author(s):  
A. K. Owen ◽  
A. Daugherty ◽  
D. Garrard ◽  
H. C. Reynolds ◽  
R. D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six-kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper presents the model calibration results and the results of the trade-off study. A companion paper discusses the model development and describes the test facilities used to obtain the calibration data.


Author(s):  
A. Karl Owen ◽  
Anne Daugherty ◽  
Doug Garrard ◽  
Howard C. Reynolds ◽  
Richard D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six-kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper presents the model calibration results and the results of the trade-off study. A companion paper discusses the model development and describes the test facilities used to obtain the calibration data.


Author(s):  
T. P. Laughlin ◽  
Joseph Toth

Airborne Early Warning for the Navy fleets has been provided for the past 20 years by the Grumman/Allison E-2 Airframe/T56 engine combination. Although avionic capability has been continually updated to meet the increased threat, the airframe and powerplant have seen only minor changes. Projected mission requirements and future avionic system enhancements require payload increases being limited by the power capability of the present T56 powerplant. Of paramount importance in the E-2 carrier deck operation is the single engine rate of climb capability of the aircraft. This paper discusses the logical evolution of a replacement engine for the E-2C — a derivative T56 engine contracted and designated by the Navy as the T56-A-427 — to meet the projected single engine takeoff and other mission requirements. The T56-A-427 provides 24% power and 13% fuel consumption improvements with identical installation interfaces, and substantially improves E-2C performance characteristics across the flight envelope. Furthermore, the paper shows that meeting these stringent performance requirements with a derivative engine results in a low risk development program and an engine with improved maintainability and reliability, which can capitalize on the in-place logistics support base of the T56 — the world’s longest production run gas turbine engine.


Author(s):  
N. R. Balling ◽  
V. W. van Ornum

The objective of the research and development program reported by this paper was to decrease the specific fuel consumption of a small gas-turbine engine by means of an increase in pressure ratio alone. Development of a centrifugal compressor is presented, with a general description of equipment, methods, and special problems met during the tests. Results showed the required decrease in specific fuel consumption and pointed up the advantages of a straightforward development program.


Author(s):  
Michael J. Zoccoli ◽  
William H. Cheeseman

Main powerplants for aircraft in the US Navy inventory typically require a source of pneumatic power in order to initiate the engine start sequence. The equipment which is used as the source for this power is termed “UNIJASU”, or Universal Jet Aircraft Start Unit. UNIJASU is a fully self-contained, transportable source of ground power which may be adapted to both land or carrier-based operations. At the nucleus of this unit is a modified T53 aircraft gas turbine, originally developed and fielded by the Lycoming Turbine Engine Division of Stratford Conn. In the current application, the T53 has been re-configured as a gas generator with specific provisions for extensive operation in a marine environment. Using the bleed machine concept, up to 30% of the engine massflow (equating to roughly 420 air horsepower) can be delivered to an aircraft starter upon demand. The present production source for the T53 engine is the AlliedSignal Engine Company, located at Phoenix, Az. As of the writing date (mid-1997), the US Navy is in the process of procuring its next generation air start units via contract to AlliedSignal. This paper describes the salient features of a rigorous two-phase development program starting with the initial adaptation of the aircraft turbine engine to a naval ground power unit, and culminating with over 6000hrs of system level testing, inclusive of actual field evaluations.


1999 ◽  
Vol 121 (3) ◽  
pp. 377-383 ◽  
Author(s):  
A. K. Owen ◽  
A. Daugherty ◽  
D. Garrard ◽  
H. C. Reynolds ◽  
R. D. Wright

A generic one-dimensional gas turbine engine model, development at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics, and, thus, quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration results and the results of the trade-off study.


Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.


Author(s):  
Robert A. Wilson ◽  
Daniel B. Kupratis ◽  
Satyanarayana Kodali

The Department of Defense and NASA have funded a major gas turbine development program, Integrated High Performance Turbine Engine Technology (IHPTET), to double the power density and fuel economy of gas turbines by the turn of the century. Seven major US gas turbine developers participated in this program. While the focus of IHPTET activity has been aircraft propulsion, the same underlying technology can be applied to water craft and terrestrial vehicle propulsion applications, such as the future main battle tank. For these applications, the gas turbines must be equipped with recuperators. Currently, there is no technology roadmap or set of goals to guide industry and government in the development of a next generation recuperator for such applications.


Author(s):  
Seyyed Hamid Reza Hosseini ◽  
Hiwa Khaledi ◽  
Mohsen Reza Soltani

Gas turbine fault identification has been used worldwide in many aero and land engines. Model based techniques have improved isolation of faults in components and stages’ fault trend monitoring. In this paper a powerful nonlinear fault identification system is developed in order to predict the location and trend of faults in two major components: compressor and turbine. For this purpose Siemens V94.2 gas turbine engine is modeled one dimensionally. The compressor is simulated using stage stacking technique, while a stage by stage blade cooling model has been used in simulation of the turbine. New fault model has been used for turbine, in which a degradation distribution has been considered for turbine stages’ performance. In order to validate the identification system with a real case, a combined fault model (a combination of existing faults models) for compressor is used. Also the first stage of the turbine is degraded alone while keeping the other stages healthy. The target was to identify the faulty stages not faulty components. The imposed faults are one of the most common faults in a gas turbine engine and the problem is one of the most difficult cases. Results show that the fault diagnostic system could isolate faults between compressor and turbine. It also predicts the location of faulty stages of each component. The most interesting result is that the fault is predicted only in the first stage (faulty stage) of the turbine while other stages are identified as healthy. Also combined fault of compressor is well identified. However, the magnitude of degradation could not be well predicted but, using more detailed models as well as better data from gas turbine exhaust temperature, will enhance diagnostic results.


Sign in / Sign up

Export Citation Format

Share Document