The Development of Integrated Coal-Gasification Power Plants With Clean Combustion in Germany

Author(s):  
H. H. Finckh ◽  
R. Mueller

As advances are made in flue-gas clean-up systems, such as electrostatic precipitators, wet and dry desulfurization techniques and deNOX catalysers, the environmental impact of conventional steam turbine power plants fired with pulverized coal can be reduced at great expense in the form of additional capital investment and lowered station efficiency. The clean fuel gas obtainable from various coal-gasification processes, however, can be used to generate electricity with excellent efficiency and low-pollution emissions in low-cost unfired combined-cycle power plants of modular design. These are termed GUD power plants from the German designation “Gas und Dampf” meaning gas and steam. The overall efficiency is appreciably enhanced by closely integrating the gas-production process with the power generating cycle. Such an integrated coal-gasification combined-cycle installation should thus allow China to exploit its vast coal reserves for electrical energy production in both the most economical and environmentally acceptable way.

Author(s):  
M. Gambini ◽  
M. Vellini

In this paper the overall performance of a new advanced mixed cycle (AMC), fed by hydrogen-rich fuel gas, has been evaluated. Obviously, hydrogen must be produced and here we have chosen the coal gasification for its production, quantifying all the thermal and electric requirements. At first, a simple combination between hydrogen production section and power section is performed. In fact, the heat loads of the first section can be satisfied by using the various raw syngas cooling, without using some material streams taken from the power section, but also without using part of heat, available in the production section and rejected into the environment, in the power section. The final result is very poor: over 34%. Then, by using the Pinch Technology, a more efficient, even if more complex, solution can be conceived: in this case the overall efficiency is very interesting: 39%. These results are very similar to those of a combined cycle power plant, equipped with the same systems and analyzed under the same hypotheses. The final result is very important because the “clean” use of coal in new power plant types must be properly investigated: in fact coal is the most abundant and the cheapest fossil fuel available on earth; moreover, hydrogen production, by using coal, is an interesting outlook because hydrogen has the potential to become the main energy carrier in a future sustainable energy economy.


1980 ◽  
Author(s):  
S. J. Lehman ◽  
A. J. Giramonti ◽  
R. H. Meyer

An exploratory study was carried out by the United Technologies Research Center and Northeast Utilities Service Company to identify the performance characteristics of power plants based upon the repowering of several existing steam plants. In steam station repowering, an advanced, high temperature gas turbine fired by coal-derived, low-Btu fuel gas would generate power and exhaust to a new waste-heat recovery boiler that replaces the old oil-fired steam boiler. Steam from the new boiler drives the existing steam turbine. Computer models were assembled to simulate the integration of molten salt and Texaco coal gasification systems with combustion turbomachinery representative of the 1990 time frame. The results of this study indicated that either coal gasifier in a combined-cycle repowering application appears attractive as a means of replacing oil-fired systems with coal.


Author(s):  
M. Gambini ◽  
G. L. Guizzi ◽  
M. Vellini

In this paper the overall performance of a new advanced mixed cycle (AMC), fed by hydrogen-rich fuel gas, has been evaluated. Obviously, hydrogen must be produced and here we have chosen the coal gasification for its production, quantifying all the thermal and electric requirements. At first, the thermodynamic performance of this cycle has been investigated in comparison with that attainable by combined cycle power plants (CC). Then, the power plants have been integrated with the fuel production system. Including all the material and energy flows, the overall performance has been evaluated. The main result of the performed investigation is that the two power plants attain the same efficiency level with and without H2 production requirements (over 60% and over 34% without and with hydrogen production respectively). The final carbon dioxide emissions are about 0.123 kg/kWh both for AMC and CC. It is important to underline that the “clean” use of coal in new power plant types must be properly investigated because it is the most abundant and the cheapest fossil fuel available on earth; moreover, hydrogen production, by using coal, is an interesting prospect because hydrogen has the potential to become the main energy carrier in a future sustainable energy economy.


Author(s):  
B. Cornils ◽  
J. Hibbel ◽  
P. Ruprecht ◽  
R. Dürrfeld ◽  
J. Langhoff

The Ruhrchemie/Ruhrkohle variant of the Texaco Coal Gasification Process (TCGP) has been on stream since 1978. As the first demonstration plant of the “second generation” it has confirmed the advantages of the simultaneous gasification of coal: at higher temperatures; under elevated pressures; using finely divided coal; feeding the coal as a slurry in water. The operating time so far totals 9000 hrs. More than 50,000 tons of coal have been converted to syn gas with a typical composition of 55 percent CO, 33 percent H2, 11 percent CO2 and 0.01 percent of methane. The advantages of the process — low environmental impact, additional high pressure steam production, gas generation at high pressure levels, steady state operation, relatively low investment costs, rapid and reliable turn-down and load-following characteristics — make such entrained-bed coal gasification processes highly suitable for power generation, especially as the first step of combined cycle power plants.


Author(s):  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi ◽  
Peter Breuhaus ◽  
Øystein Arild

The overall goal of the European co-financed H2-IGCC project was to provide and demonstrate technical solutions for highly efficient and reliable gas turbine technology in the next generation of integrated gasification combined cycle (IGCC) power plants with CO2 capture suitable for combusting undiluted H2-rich syngas. This paper aims at providing an overview of the main activities performed in the system analysis working group of the H2-IGCC project. These activities included the modeling and integration of different plant components to establish a baseline IGCC configuration, adjustments and modifications of the baseline configuration to reach the selected IGCC configuration, performance analysis of the selected plant, performing techno-economic assessments and finally benchmarking with competing fossil-based power technologies. In this regard, an extensive literature survey was performed, validated models (components and sub-systems) were used, and inputs from industrial partners were incorporated into the models. Accordingly, different plant components have been integrated considering the practical operation of the plant. Moreover, realistic assumptions have been made to reach realistic techno-economic evaluations. The presented results show that the efficiency of the IGCC plant with CO2 capture is 35.7% (lower heating value basis). The results also confirm that the efficiency is reduced by 11.3 percentage points due to the deployment of CO2 capture in the IGCC plant. The specific capital costs for the IGCC plant with capture are estimated to be 2,901 €/(kW net) and the cost of electricity for such a plant is 90 €/MWh. It is also shown that the natural gas combined cycle without CO2 capture requires the lowest capital investment, while the lowest cost of electricity is related to IGCC plant without CO2 capture.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
Michael S. Blinderman

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.


Author(s):  
M. W. Horner ◽  
R. K. Alff ◽  
J. C. Corman

Simplified integrated gasification combined cycle (IGCC) power plants offer attractive advantages for improving the performance of coal to electricity systems. This plant configuration, which utilizes a coal gasifier, hot gas cleanup system, and gas turbine combined cycle, has the potential to reduce both capital costs for equipment and fuel costs through improved efficiency. This paper reports the results of fuel supply and gas turbine testing on actual hot low-Btu coal gas. A pilot-scale advanced fixed-bed gasifier has been modified to supply hot coal gas to a particulate removal cyclone and then to a gas turbine simulator. The hot gas is combusted in a General Electric MS6000 combustor developed for low-Btu gas fuel. The combusted product flows through a MS6000 turbine first-stage nozzle sector. The exhaust gases from the nozzle sector pass over air-cooled cylindrical ash deposition pin specimens and then into a water quench exhaust system. Extensive instrumentation and sampling provisions are utilized to characterize the fuel gas, the combustion gases, and the ash deposits formed on turbine components. Two regimes of nozzle metal surface temperatures have been investigated by separate testing performed including 500–600 °F with water-cooled and 1500–1650 °F with air-cooled nozzle sectors. Results from the test program have provided key data related to fuel gas cleanup and the tolerance of gas turbine hot gas path parts to the products of combustion from coal-derived fuels.


Author(s):  
M. Gambini ◽  
M. Vellini

In this paper two options for H2 production by means of fossil fuels are presented, evaluating their performance when integrated with advanced H2/air cycles. The investigation has been developed with reference to two different schemes, representative both of consolidated technology (combined cycle power plants) and of innovative technology (a new advance mixed cycle, named AMC). The two methods, here considered, to produce H2 are: • coal gasification: it permits transformation of a solid fuel into a gaseous one, by means of partial combustion reactions; • steam-methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future. These hydrogen production plants require material and energy integrations with the power section, and the best connections must be investigated in order to obtain good overall performance. The main results of the performed investigation are quite variable among the different H2 production options here considered: for example the efficiency value is over 34% for power plants coupled with coal decarbonization system, while it is in a range of 45–48% for power plants coupled with natural gas decarbonization. These differences are similar to those attainable by advanced combined cycle power plants fuelled by natural gas (traditional CC) and coal (IGCC). In other words, the decarbonization of different fossil fuels involves the same efficiency penalty related to the use of different fossil fuel in advanced cycle power plants (from CC to IGCC for example). The CO2 specific emissions depend on the fossil fuel type and the overall efficiency: adopting a removal efficiency of 90% in the CO2 absorption systems, the CO2 emission reduction is 87% and 82% in the coal gasification and in the steam-methane reforming respectively.


Author(s):  
Collins O. Ojo ◽  
Damien Pont ◽  
Enrico Conte ◽  
Richard Carroni

The integration of steam from a central-receiver solar field into a combined cycle power plant (CCPP) provides an option to convert solar energy into electricity at the highest possible efficiency, because of the high pressure and temperature conditions of the solar steam, and at the lowest capital investment, because the water-steam cycle of the CCPP is in shared use with the solar field. From the operational point of view, the plant operator has the option to compensate the variability of the solar energy with fossil fuel electricity production, to use the solar energy to save fuel and to boost the plant power output, while reducing the environmental footprint of the plant operation. Alstom is able to integrate very large amounts of solar energy in its new combined-cycle power plants, in the range of the largest solar field ever built (Ivanpah Solar Power Facility, California, 3 units, total 392 MWel). The performance potential of such integration is analyzed both at base load and at part load operation of the plant. Additionally, the potential for solar retrofit of existing combined-cycle power plants is assessed. In this case, other types of concentrating solar power technologies than central receiver (linear Fresnel and trough) may be best suited to the specific conditions. Alstom is able to integrate any of these technologies into existing combined-cycle power plants.


Sign in / Sign up

Export Citation Format

Share Document