The Influences of Off-Design Incidence Angle and Discrete Hole Shapes on Film Cooling Effectiveness

Author(s):  
Shao-Yen Ko ◽  
Deng-Ying Liu ◽  
Jian-Guo Jia ◽  
Fu-Kang Tsou

Detailed tests have been conducted in the cascade heat transfer wind tunnel in order to investigate film cooling effectiveness of single and double-row discrete holes on the leading edge of the pressure surface of a turbine blade. Mass transfer analogy has been used in this experiment. Carbon dioxide was added to the cooling air. The concentration distribution of the carbon dioxide downstream of the cooling film was measured by chromatograph. Two sets of testing blades with discrete holes of different shapes were used. The first set had round holes with diameter of 1.5 mm, and the ejection angle was 70°. The second set had rectangular holes with width of 1.0 mm and whose ratio of length to width was 5, the ejection angle being 90°. The holes between rows were arranged in staggered pattern. It was found that the incidence angle has strong influence on film cooling of turbine blades. The film cooling effectiveness near the ejection hole on the pressure surface (concave surface) is higher than that on a flat plate and on a suction surface (convex surface). Over a wide range of blowing ratio M, the film cooling effectiveness of rectangular hole is much higher than round holes.

2003 ◽  
Vol 125 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Michael Gritsch ◽  
Achmed Schulz ◽  
Sigmar Wittig

Film-cooling was the subject of numerous studies during the past decades. However, the effect of flow conditions on the entry side of the film-cooling hole on film-cooling performance has surprisingly not received much attention. A stagnant plenum which is widely used in experimental and numerical studies to feed the holes is not necessarily a right means to re-present real engine conditions. For this reason, the present paper reports on an experimental study investigating the effect of a coolant crossflow feeding the holes that is oriented perpendicular to the hot gas flow direction to model a flow situation that is, for instance, of common use in modern turbine blades’ cooling schemes. A comprehensive set of experiments was performed to evaluate the effect of perpendicular coolant supply direction on film-cooling effectiveness over a wide range of blowing ratios (M=0.5…2.0) and coolant crossflow Mach numbers Mac=0…0.6. The coolant-to-hot gas density ratio, however, was kept constant at 1.85 which can be assumed to be representative for typical gas turbine applications. Three different hole geometries, including a cylindrical hole as well as two holes with expanded exits, were considered. Particularly, two-dimensional distributions of local film-cooling effectiveness acquired by means of an infrared camera system were used to give detailed insight into the governing flow phenomena. The results of the present investigation show that there is a profound effect of how the coolant is supplied to the hole on the film-cooling performance in the near hole region. Therefore, crossflow at the hole entry side has be taken into account when modeling film-cooling schemes of turbine bladings.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.


Author(s):  
Yang Zhang ◽  
Xin Yuan

The film cooling injection on Hp turbine component surface is strongly affected by the complex flow structure in the nozzle guide vane or rotor blade passages. The action of passage vortex near endwall surface could dominate the film cooling effectiveness distribution on the component surfaces. The film cooling injections from endwall and airfoil surface are mixed with the passage vortex. Considering a small part of the coolant injection from endwall will move towards the airfoil suction side and then cover some area, the interaction between the coolants injected from endwall and airfoil surface is worth investigating. Though the temperature of coolant injection from endwall increases after the mixing process in the main flow, the injections moving from endwall to airfoil suction side still have the potential of second order cooling. This part of the coolant is called “Phantom cooling flow” in the paper. A typical scale-up model of GE-E3 Hp turbine NGV is used in the experiment to investigate the cooling performance of injection from endwall. Instead of the endwall itself, the film cooling effectiveness is measured on the airfoil suction side. This paper is focused on the combustor-turbine interface gap leakage flow and the coolant from fan-shaped holes moving from endwall to airfoil suction side. The coolant flow is injected at a 30deg angle to the endwall surface both from a slot and four rows of fan-shaped holes. The film cooling holes on the endwall and the leakage flow are used simultaneously. The blowing ratio and incidence angle are selected to be the parameters in the paper. The experiment is completed with the blowing ratio changing from M = 0.7 to M = 1.3 and the incidence angle varying from −10deg to +10deg, with inlet Reynolds numbers of Re = 3.5×105 and an inlet Mach number of Ma = 0.1.


2006 ◽  
Vol 128 (9) ◽  
pp. 879-888 ◽  
Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).


Author(s):  
Rebekah A. Russin ◽  
Daniel Alfred ◽  
Lesley M. Wright

This paper presents the development of a novel experimental technique utilizing both temperature and pressure sensitive paints (TSP and PSP). Through the combination of these paints, both detailed heat transfer coefficient and film cooling effectiveness distributions can be obtained from two short experiments. Using a mass transfer analogy, PSP has proven to be a powerful technique for measurement of film cooling effectiveness. This benefit is exploited to obtain detailed film cooling effectiveness distributions from a steady state flow experiment. This measured film cooling effectiveness is combined with transient temperature distributions obtained from a transient TSP experiment to produce detailed heat transfer coefficient distributions. Optical filters are used to differentiate the light emission from the florescent molecules comprising the PSP and TSP. Although two separate tests are needed to obtain the heat transfer coefficient distributions, the two tests can be performed in succession to minimize setup time and variability. The detailed film effectiveness and heat transfer enhancement ratios have been obtained for a generic, inclined angle (θ = 35°) hole geometry on a flat plate. Distinctive flow features over a wide range of blowing ratios have been captured with the proposed technique. In addition, the measured results have compared favorably to previous studies (both qualitatively and quantitatively), thus substantiating the use of the combined PSP / TSP technique for experimental investigations of three temperature mixing problems.


Author(s):  
Young Seok Kang ◽  
Dong-Ho Rhee ◽  
Sanga Lee ◽  
Bong Jun Cha

Abstract Conjugate heat transfer analysis method has been highlighted for predicting heat exchange between fluid domain and solid domain inside high-pressure turbines, which are exposed to very harsh operating conditions. Then it is able to assess the overall cooling effectiveness considering both internal cooling and external film cooling at the cooled turbine design step. In this study, high-pressure turbine nozzles, which have three different film cooling holes arrangements, were numerically simulated with conjugate heat transfer analysis method for predicting overall cooling effectiveness. The film cooling holes distributed over the nozzle pressure surface were optimized by minimizing the peak temperature, temperature deviation. Additional internal cooling components such as pedestals and rectangular rib turbulators were modeled inside the cooling passages for more efficient heat transfer. The real engine conditions were given for boundary conditions to fluid and solid domains for conjugate heat transfer analysis. Hot combustion gas properties such as specific heat at constant pressure and other transport properties were given as functions of temperature. Also, the conductivity of Inconel 718 was also given as a function of temperature to solve the heat equation in the nozzle solid domain. Conjugate heat transfer analysis results showed that optimized designs showed better cooling performance, especially on the pressure surface due to proper staggering and spacing hole-rows compared to the baseline design. The overall cooling performances were offset from the adiabatic film cooling effectiveness. Locally concentrated heat transfer and corresponding high cooling effectiveness region appeared where internal cooling effects were overlapped in the optimized designs. Also, conjugate heat transfer analysis results for the optimized designs showed more uniform contours of the overall cooling effectiveness compared to the baseline design. By varying the coolant mass flow rate, it was observed that pressure surface was more sensitive to the coolant mass flow rate than nozzle leading edge stagnation region and suction surface. The CHT results showed that optimized designs to improve the adiabatic film cooling effectiveness also have better overall cooling effectiveness.


1980 ◽  
Vol 102 (3) ◽  
pp. 524-534 ◽  
Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
Je-Chin Han ◽  
P. E. Jenkins

The intent of this work is to show, analytically, that superheated steam can provide better film cooling than conventional air for gas turbine blades and vanes. Goldstein’s two-dimensional and Eckert’s three-dimensional models have been reexamined and modified in order to include the effects of thermal-fluid properties of foreign gas injection on the film cooling effectiveness. Based on the modified models, the computed results for steam film cooling effectiveness, showing an increase of 80 to 100 percent when compared with air cooling at the same operating conditions, are presented.


Sign in / Sign up

Export Citation Format

Share Document