Application of a Low Reynolds Number k-ϵ Turbulence Model to High-Speed Rotating Cavity Flows

1989 ◽  
Author(s):  
A. P. Morse

A low turbulence Reynolds number k-ϵ model has been used in conjunction with an elliptic flow calculation procedure to obtain finite-difference solutions for radial outflow in the cavity formed between two plane corotating discs and an outer peripheral shroud. Air enters the cavity axially through a central hole in one of the discs and is assumed to leave via a uniform sink layer adjacent to the shroud. The main emphasis of the paper is the extension of the solution procedure to cover high rotational speeds, with rotational Reynolds numbers up to 107. As a necessary prerequisite to this exercise, the turbulence model is validated by its good predictive accuracy of existing experimental data up to a maximum rotational Reynolds number of 1.1 × 106.

1991 ◽  
Vol 113 (1) ◽  
pp. 98-105 ◽  
Author(s):  
A. P. Morse

A low turbulence Reynolds number k-ε model has been used in conjunction with an elliptic flow calculation procedure to obtain finite-difference solutions for radial outflow in the cavity formed between two plane corotating disks and an outer peripheral shroud. Air enters the cavity axially through a central hole in one of the disks and is assumed to leave via a uniform sink layer adjacent to the shroud. The main emphasis of the paper is the extension of the solution procedure to cover high rotational speeds, with rotational Reynolds numbers up to 107. As a necessary prerequisite to this exercise, the turbulence model is validated by its good predictive accuracy of existing experimental data up to a maximum rotational Reynolds number of 1.1 × 106.


1988 ◽  
Vol 110 (2) ◽  
pp. 202-211 ◽  
Author(s):  
A. P. Morse

Predictions of the isothermal, incompressible flow in the cavity formed between two corotating plane disks and a peripheral shroud have been obtained using an elliptic calculation procedure and a low turbulence Reynolds number k–ε model for the estimation of turbulent transport. Both radial inflow and outflow are investigated for a wide range of flow conditions involving rotational Reynolds numbers up to ∼106. Although predictive accuracy is generally good, the computed flow in the Ekman layers for radial outflow often displays a retarded spreading rate and a tendency to laminarize under conditions that are known from experiment to produce turbulent flow.


1994 ◽  
Author(s):  
Jian-Xin Chen ◽  
Xiaopeng Gan ◽  
J. Michael Owen

This paper describes a combined experimental and computational study of the heat transfer from an electrically-heated disc rotating close to an unheated stator. A radial outflow of cooling air was used to remove heat from the disc, and local Nusselt numbers were measured, using fluxmeters at seven radial locations, for nondimensional flow rates up to C = 9680 and rotational Reynolds numbers up to Reφ = 1.2 × 106. Computations were carried out using an elliptic solver with a low-Reynolds-number k-ε turbulence model, and the agreement between the measured and computed velocities and Nusselt numbers was mainly good.


1996 ◽  
Vol 118 (3) ◽  
pp. 444-451 ◽  
Author(s):  
J.-X. Chen ◽  
X. Gan ◽  
J. M. Owen

This paper describes a combined experimental and computational study of the heat transfer from an electrically heated disk rotating close to an unheated stator. A radial outflow of cooling air was used to remove heat from the disk, and local Nusselt numbers were measured, using fluxmeters at seven radial locations, for nondimensional flow rates up to Cw = 9680 and rotational Reynolds numbers up to Reφ = 1.2 × 106 Computations were carried out using an elliptic solver with a low-Reynolds-number k–ε turbulence model, and the agreement between the measured and computed velocities and Nusselt numbers was mainly good.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 19
Author(s):  
Ola Elfmark ◽  
Robert Reid ◽  
Lars Morten Bardal

The purpose of this study was to investigate the impact of blockage effect and Reynolds Number dependency by comparing measurements of an alpine skier in standardized positions between two wind tunnels with varying blockage ratios and speed ranges. The results indicated significant blockage effects which need to be corrected for accurate comparison between tunnels, or for generalization to performance in the field. Using an optimized blockage constant, Maskell’s blockage correction method improved the mean absolute error between the two wind tunnels from 7.7% to 2.2%. At lower Reynolds Numbers (<8 × 105, or approximately 25 m/s in this case), skier drag changed significantly with Reynolds Number, indicating the importance of testing at competition specific wind speeds. However, at Reynolds Numbers above 8 × 105, skier drag remained relatively constant for the tested positions. This may be advantageous when testing athletes from high speed sports since testing at slightly lower speeds may not only be safer, but may also allow the athlete to reliably maintain difficult positions during measurements.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xueying Yan ◽  
Rupp Carriveau ◽  
David S. K. Ting

When buoyant vortex rings form, azimuthal disturbances occur on their surface. When the magnitude of the disturbance is sufficiently high, the ring will become turbulent. This paper establishes conditions for categorization of a buoyant vortex ring as laminar, transitional, or turbulent. The transition regime of enclosed-air buoyant vortex rings rising in still water was examined experimentally via two high-speed cameras. Sequences of the recorded pictures were analyzed using matlab. Key observations were summarized as follows: for Reynolds number lower than 14,000, Bond number below 30, and Weber number below 50, the vortex ring could not be produced. A transition regime was observed for Reynolds numbers between 40,000 and 70,000, Bond numbers between 120 and 280, and Weber number between 400 and 800. Below this range, only laminar vortex rings were observed, and above, only turbulent vortex rings.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


1990 ◽  
Author(s):  
A. P. Morse ◽  
C. L. Ong

The paper presents finite-difference predictions for the convective heat transfer in symmetrically-heated rotating cavities subjected to a radial outflow of cooling air. An elliptic calculation procedure has been used, with the turbulent fluxes estimated by means of a low Reynolds number k-ε model and the familiar ‘turbulence Prandtl number’ concept. The predictions extend to rotational Reynolds numbers of 3.7 × 106 and encompass cases where the disc temperatures may be increasing, constant or decreasing in the radial direction. It is found that the turbulence model leads to predictions of the local and average Nusselt numbers for both discs which are generally within ± 10% of the values from published experimental data, although there appear to be larger systematic errors for the upstream disc than for the downstream disc. It is concluded that the calculations are of sufficient accuracy for engineering design purposes, but that improvements could be brought about by further optimization of the turbulence model.


1966 ◽  
Vol 88 (1) ◽  
pp. 221-228 ◽  
Author(s):  
H. Schlichting ◽  
A. Das

A survey is given of extensive research work on cascade-flow problems carried out in recent years in Germany. A considerable part of this work was done in the Variable Density High Speed Cascade Wind Tunnel of the Deutsche Forschungsanstalt fu¨r Luftfahrt at Braunschweig, in which the Reynolds number and the Mach number of the cascade can be varied independently. For compressor cascades with blades of different thickness ratio extensive measurements of the aerodynamic coefficients have been carried out in a wide range of Mach numbers and Reynolds numbers. For very low Reynolds numbers, as they occur for jet engines in high-altitude flight, the influence of turbulence level on loss coefficients has been investigated. Furthermore, comprehensive investigations on secondary-flow losses are reported. The most important parameters in this connection are the ratio of blade length to blade chord, the tip clearance, the Reynolds number, and the deflection of the flow in the cascade. The influence of all these parameters on the secondary-flow losses has been clarified to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document