Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing

Author(s):  
Thomas E. Biesinger ◽  
David G. Gregory-Smith

The effect of upstream tangential blowing on the secondary flows has been studied in a turbine cascade of rotor blades. The aim is to reduce the secondary flows and losses, but in the evaluation an accounting procedure for the energy for blowing is required. The experimental results show that the effect of the increasing blowing is first to thicken the inlet boundary layer, giving greater secondary flow and more loss, and then as re-energisation of the inlet boundary layer takes place together with increasing counter streamwise vorticity, the passage vortex is progressively weakened, with a corresponding reduction in loss. Low rather than high angle blowing is shown to be more effective as the jet is kept closer to the end wall, and strong similarities could be obtained with the flow patterns from previous work with a skewed inlet boundary layer. However when the energy for inlet blowing is included, no net gain is achieved due mainly to the mixing loss of the injected air. Overall gains may be achievable, if combined with such features as injection for film cooling.

Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner ◽  
E. A. Grover ◽  
R. Jurek

Incorporating the platform overlap and endwall cavity into the early stages of turbine CFD analyses is desirable from the perspective of accurately capturing the near endwall flow features. However, the overlap and cavity geometry increase the complexity of the computational domain making CFD meshes more difficult to generate and the CFD solutions more resource intensive. Thus, geometric approximations are often made to simplify the CFD analysis. This paper examines, experimentally, the secondary flows of a linear turbine cascade with three different platform overlap geometries, two of which incorporate geometric simplifications. These are then compared with the corresponding computations. Experimental measurements were collected using a seven-hole pressure probe at a plane located 40% of the axial chord downstream of the trailing edge. Steady-state computational predictions were performed using ANSYS CFX 12.0 and employed the SST transition turbulence model. The experimental results show that the presence of an upstream rim-seal creates a stronger passage vortex, relative to a flat endwall, resulting in larger integrated losses as well as higher levels of secondary kinetic energy and streamwise vorticity. Subtle differences in the strength of the passage vortex and the associated losses are observed for the simplified geometries in both the measured and predicted results. By examining the details of the cavity flow, a recirculation zone is identified which energizes the formation of the passage vortex. The effect of the recirculation zone may be attenuated or intensified by the rim-seal geometry. The paper concludes by addressing the validity and usefulness of the proposed platform overlap simplifications in design-oriented computations.


Author(s):  
J. K. K. Chan ◽  
M. I. Yaras ◽  
S. A. Sjolander

An experiment has been conducted in a large-scale linear turbine cascade to examine the interaction between the inlet endwall boundary layer, tip-leakage and secondary flows. Detailed flow field measurements have been made upstream and downstream of the blade row for two values of inlet boundary layer thickness (δ*/c of about 0.015 and 0.04) together with three values of tip clearance (gap heights of 0.0, 1.5 and 5.5 percent of blade chord). In the downstream plane, the total pressure deficits associated with the tip-leakage and secondary flows were discriminated by examining the sign of the streamwise vorticity. For this case, the streamwise vorticity of the two flows have opposite signs and this proved an effective criterion for separating the flows despite their close proximity in space. It was found that with clearance the loss associated with the secondary flow was substantially reduced from the zero clearance value, in contradiction to the assumption made in most loss prediction schemes. Further work is needed, notably to clarify the influence of relative tip-wall motion which in turbines reduces the tip-leakage flow while enhancing the secondary flow.


Author(s):  
Piotr P. Doerffer ◽  
Jochen Amecke

The structure of a secondary flow in a linear turbine cascade has been investigated. In order to analyse streamwise vortices configuration and to control their formation two types of side wall boundary layer fences have been applied. Results obtained proved that the streamwise fence reduces significantly spanwise extent of secondary flows. Transverse fence has no such effect but causes very significant change of location and the losses level in a passage vortex. Presented results cast some new light on the contribution of passage vortex, horse shoe vortex and a shear plain in between, to the losses maximum where these flow elements are in direct neighbourhood.


Author(s):  
R. Pichler ◽  
Yaomin Zhao ◽  
R. D. Sandberg ◽  
V. Michelassi ◽  
R. Pacciani ◽  
...  

In low-pressure-turbines (LPT) around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving CFD allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds Averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES, and on the analysis of the overall time averaged flow field and comparison between RANS, LES and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, its impact on the blade load variation along the span and end-wall flow visualizations are analysed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.


Author(s):  
Gregory J. Hebert ◽  
William G. Tiederman

The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades bypassing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.


Author(s):  
J. T. Chung ◽  
T. W. Simon ◽  
J. Buddhavarapu

A flow management technique designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage is introduced. A boundary layer fence in the gas turbine passage is shown to improve the likelihood of efficient film cooling on the suction surface near the endwall. The fence prevents the pressure side leg of the horseshoe vortex from crossing to the suction surface and impinging on the wall. The vortex is weakened and decreased in size after being deflected by the fence. Such diversion of the vortex will prevent it from removing the film cooling flow allowing the flow to perform its cooling function. Flow visualization on the suction surface and through the passage shows the behavior of the passage vortex with and without the fence. Laser Doppler velocimetry is employed to quantify these observations.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Amy Mensch ◽  
Karen A. Thole

Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer, along with solid conduction, determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the nondimensional external surface temperature, known as overall effectiveness, of an endwall with nonaxisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the effectiveness of impingement alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and the contoured endwalls. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.


Author(s):  
G Persico ◽  
P Gaetani ◽  
V Dossena ◽  
G D'Ippolito ◽  
C Osnaghi

The present article proposes a novel methodology to evaluate secondary flows generated by the annulus boundary layers in complex cascades. Unlike two-dimensional (2D) linear cascades, where the reference flow is commonly defined as that measured at midspan, the problem of the reference flow definition for annular or complex 3D linear cascades does not have a general solution up to the present time. The proposed approach supports secondary flow analysis whenever exit streamwise vorticity produced by inlet endwall boundary layers is of interest. The idea is to compute the reference flow by applying slip boundary conditions at the endwalls in a viscous 3D numerical simulation, in which uniform total pressure is prescribed at the inlet. Thus the reference flow keeps the 3D nature of the actual flow except for the contribution of the endwall boundary layer vorticity. The resulting secondary field is then derived by projecting the 3D flow field (obtained from both an experiment and a fully viscous simulation) along the local reference flow direction; this approach can be proficiently applied to any complex geometry. This method allows the representation of secondary velocity vectors with a better estimation of the vortex extension, since it offers the opportunity to visualize also the region of the vortices, which can be approximated as a potential type. Furthermore, a proficient evaluation of the secondary vorticity and deviation angle effectively induced by the annulus boundary layer is possible. The approach was preliminarily verified against experimental data in linear cascades characterized by cylindrical blades, not reported for the sake of brevity, showing a very good agreement with the standard methodology based only on the experimental midspan flow field. This article presents secondary flows obtained by the application of the proposed methodology on two annular cascades with cylindrical and 3D-designed blades, stressing the differences with other definitions. Both numerical and experimental results are considered.


1996 ◽  
Vol 118 (3) ◽  
pp. 468-478 ◽  
Author(s):  
G. Wilfert ◽  
L. Fottner

For the application of film cooling to turbine blades, experimental investigations were performed on the mixing processes in the near-hole region with a row of holes on the suction suction side of a turbine cascade. Data were obtained using pneumatic probes, pressure tappings, and a three-dimensional subminiature hot-wire probe, as well as surface flow visualization techniques. It was found that at low blowing rates, a cooling jet behaves very much like a normal obstacle and the mixing mainly takes place in the boundary layer. With increasing blowing rates, the jet penetrates deeper into the mainstream. The variation of the turbulence level at the inlet of the turbine cascade and the Reynolds number showed a strong influence on the mixing behavior. The kidney-shaped vortex and as an important achievement the individual horseshoe vortex of each single jet were detected and their exact positions were obtained. This way it was found that the position of the horseshoe vortex is strongly dependent on the blowing rate and this influences the aerodynamic mixing mechanisms. A two-dimensional code for the calculation of boundary layer flows called GRAFTUS was used; however, the comparison with the measurements showed only limited agreement for cascade flow with blowing due to the strong three-dimensional flow pattern.


Sign in / Sign up

Export Citation Format

Share Document