scholarly journals Dynamic Modeling of Single-Shaft Industrial Gas Turbine

Author(s):  
R. Bettocchi ◽  
P. R. Spina ◽  
F. Fabbri

In the paper the dynamic non-linear model of single shaft industrial gas turbine was developed as the first stage of a methodology aimed at the diagnosis of measurement and control sensors and gas turbine operating conditions. The model was calibrated by means of reference steady-state condition data of a real industrial gas turbine and was used to simulate various machine transients. The model is modular in structure and was carried out in simplified form, but not so as to compromise its accuracy, to reduce the calculation time and thus make it more suitable for on-line simulation. The comparison between values of working parameters obtained by the simulations and measurements during some transients on the gas turbine in operation provided encouraging results.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Pradeep K. Gupta ◽  
Howard G. Gibson

Abstract Real-time dynamic modeling of cryogenic ball bearings, where the rotating inner race accelerates to the operating speed, is based on integration of classical differential equations of motion of bearing elements, when experimentally measured ball/race traction behavior is used to compute the imposed acceleration on the rolling elements. The dynamic performance simulation provides a realistic coupling between traction behavior in the ball-to-race contacts and dynamics of bearing element motion as the bearing goes through the transient speed variation. However, due to vastly different mechanical and thermal time scales, heat generation in the bearing is time-averaged over a relatively large thermal time-step to model temperature fields as a step change, while the bearing motion is simulated in real-time. The emphasis is on dynamic modeling with thermal coupling in a static sense. Under stable conditions, the step change in temperature field converges to operating value as the bearing approaches a dynamic steady-state condition, which demonstrates acceptable significance of the dynamic simulation with coupled thermal interactions. Both all steel and hybrid ball bearings for liquid oxygen (LOX) turbo pump applications are modeled. Bearing performance simulations are closely modeled over experimental time cycles in both transient and steady-state domains. Steady-state solutions are shown to be independent of initial conditions to demonstrate acceptable convergence of time domain integrations. Model predictions of heat transferred to circulating LOX is within the range of variation in experimental data. Parametric evaluation of bearing performance as a function of operating conditions demonstrate that while the ball/race contact stress is higher in a hybrid bearing, contact heat generation is significantly lower in comparison with that in the all steel bearings.


Author(s):  
Zhong Wang ◽  
Yujiong Gu ◽  
Xudong Han ◽  
Junjie Zhu ◽  
Jiaohui Xu

In the frequency modulation process of the heavy power generation gas turbine, the variation of output power will cause the fluctuation of the operating parameters. In order to detect the anomaly of the true performance deterioration accurately, a novel statistical anomaly detection model was developed. First, the mathematical description of the operating parameters under three different operating conditions—unsteady-state, steady-state and normal, steady-state and anomaly—was presented according to the characteristics of parameters and output power. Second, the new characteristic test statistic P-ratio based on the T-statistic was proposed for the anomaly detection under the steady-state condition. Then, the on-line steady-state detection algorithm based on the Gaussian mixture model was built for the unsteady-state identification. Finally, the efficacy of the model was examined on the synthetic deterioration data, which superimposes the anomaly simulation signal data on the real healthy data from a real power generation gas turbine. The testing result is shown to be satisfactory with respect to the false positive rate and the true positive rate. Future research is required to further improve the accuracy of the proposed model.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Behzad ◽  
Benjamin Herrmann ◽  
Williams R. Calderón-Muñoz ◽  
José M. Cardemil ◽  
Rodrigo Barraza

Purpose Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress. Design/methodology/approach The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events. Findings The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions. Originality/value Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.


1993 ◽  
Vol 115 (3) ◽  
pp. 347-351 ◽  
Author(s):  
T. Katoh ◽  
E. Urata

This paper deals with an automatic curing process for out-of-straightness of terminal ends of seamless pipes. The developed curing process is composed of a measuring stage and a controlling stage. In the measuring stage, the out-of-straightness pattern of each pipe is measured automatically, then reference pressure points and press strokes are determined to minimize the sum of squares of deflection angles. In the controlling stage, elastic springback of the pipe is predicted by an observer using the calculated press stroke, on-line measured values of reactive force, and deflection of the pipe. Through a series of experiments, the validity of the proposed process was verified.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


2021 ◽  
Author(s):  
Joshua D. Neveu ◽  
Stefan D. Cich ◽  
J. Jeffrey Moore ◽  
Jason Mortzheim

Abstract Among the list of advanced technologies required to support the energy industry’s novel Supercritical Carbon Dioxide (sCO2) power cycle is the need for a robust and responsive control system. Recent testing has been performed on a 2.5 MWe sCO2 compressor operating near the critical temperature (31C) and critical pressure (73.8 bar), developed with funding from the US DOE Apollo program and industry partners. While sCO2 compression has been performed before, operating near the critical point has many key benefits for power generation with its low head requirements and smaller physical footprint. However, with these benefits come unique challenges, namely controlling this system to steady-state operating conditions. Operating just above the critical point (35°C [95°F] and 8.5 MPa [1,233 psi]) there can be large and rapid swings in density produced by subtle changes in temperature, leading to increased difficulty in maintaining adequate control of the compressor system. This means that proper functionality of the entire compressor system, and its usefulness to a closed loop recompression Brayton power cycle, is largely dependent on variables such as thermal sources, precision and response time of the instrumentation, proper heat soaking, and strategic filling and venting sequences. While other papers have discussed the science behind and performance of sCO2 compressors, this paper will discuss the challenges associated with steady-state control of the compressor at or near operating conditions, how the fill process was executed for optimal startup, and changes that occurred while idling during trip events.


Author(s):  
K. Frueh ◽  
Th. Lorenz ◽  
J. Niehoff ◽  
J. Diekmann ◽  
R. Hiddessen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document