An Assessment of the Performance of Closed Cycles With and Without Heat Rejection at Cryogenic Temperatures

Author(s):  
A. Agazzani ◽  
A. F. Massardo ◽  
T. Korakianitis

This paper presents optimized cycle performance that can be obtained with systems including a Closed Cycle Gas Turbine (CCGT). The influence of maximum temperature, minimum temperature and recuperator effectiveness on cycle performance is illustrated. Several power-plant arrangements are analyzed and compared based on: thermodynamic performance (thermal efficiency and specific work); enabling technologies (available at present); and developing technologies (available in the near term or future). The work includes the effects of utilization of high temperature ceramic heat exchangers and of coupling of CCGT systems with plants vaporizing Liquid Hydrogen (LH2) or Liquefied Natural Gas (LNG). Given the versatility of energy addition and rejection sources that can be utilized in closed gas-cycle systems, the thermodynamic performance of power plants shown in this paper indicate the remarkable capabilities and possibilities for closed gas-cycle systems.

1999 ◽  
Vol 121 (3) ◽  
pp. 458-465 ◽  
Author(s):  
A. Agazzani ◽  
A. F. Massardo ◽  
T. Korakianitis

This paper presents optimized cycle performance that can be obtained with systems including a closed cycle gas turbine (CCGT). The influence of maximum temperature, minimum temperature, and recuperator effectiveness on cycle performance is illustrated, Several power-plant arrangements are analyzed and compared based on thermodynamic performance (thermal efficiency and specific work); enabling technologies (available at present); and developing technologies (available in the near term or future). The work includes the effects of utilization of high temperature ceramic heat exchangers and of coupling of CCGT systems with plants vaporizing liquid hydrogen (LH2) or liquefied natural gas (LNG). Given the versatility of energy addition and rejection sources that can be utilized in closed gas-cycle systems, the thermodynamic performance of power plants shown in this paper indicate the remarkable capabilities and possibilities for closed gas-cycle systems.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


1989 ◽  
Vol 111 (4) ◽  
pp. 587-594 ◽  
Author(s):  
G. A. Tsongas ◽  
T. J. White

A novel Brayton open-cycle engine is under development. It operates similarly to a gas turbine engine, but uses reciprocating piston compressor and expander components. The design appears to have a number of advantages, including multifuel capability, the potential for lower cost, and the ability to be scaled to small sizes without significant loss in efficiency. An interactive microcomputer model has been developed that analyzes the thermodynamic performance of the engine. The model incorporates all the important irreversibilities found in piston devices, including heat transfer, mechanical friction, pressure losses, and mass loss and recirculation. There are 38 input parameters to the model. Key independent operating parameters are maximum temperature, compressor rpm, and pressure ratio. While the development of the model and its assumptions are outlined in this paper, the emphasis is on model applications. The model has demonstrated itself to be a powerful tool for evaluating engine thermal efficiency, net specific work, and power. It can be used to analyze the performance of individual engine designs, to generate performance “maps” that graphically represent engine operating characteristics, and to perform sensitivity analysis to compare the relative effects of various input parameters. Examples of each of these model applications are discussed. Recommendations for model improvements and for further engine development work are made. The need for better experimental data to verify some critical model assumptions is stressed.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract AL 29-4C is a highly corrosion resistant alloy with a relatively high strength. This combination allows the use of lighter gage tubes, and has led to its use in the brine heat exchangers of geothermal power plants. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming and joining. Filing Code: SS-554. Producer or source: Allegheny Ludlum Corporation.


Author(s):  
Shane E. Powers ◽  
William C. Wood

With the renewed interest in the construction of coal-fired power plants in the United States, there has also been an increased interest in the methodology used to calculate/determine the overall performance of a coal fired power plant. This methodology is detailed in the ASME PTC 46 (1996) Code, which provides an excellent framework for determining the power output and heat rate of coal fired power plants. Unfortunately, the power industry has been slow to adopt this methodology, in part because of the lack of some details in the Code regarding the planning needed to design a performance test program for the determination of coal fired power plant performance. This paper will expand on the ASME PTC 46 (1996) Code by discussing key concepts that need to be addressed when planning an overall plant performance test of a coal fired power plant. The most difficult aspect of calculating coal fired power plant performance is integrating the calculation of boiler performance with the calculation of turbine cycle performance and other balance of plant aspects. If proper planning of the performance test is not performed, the integration of boiler and turbine data will result in a test result that does not accurately reflect the true performance of the overall plant. This planning must start very early in the development of the test program, and be implemented in all stages of the test program design. This paper will address the necessary planning of the test program, including: • Determination of Actual Plant Performance. • Selection of a Test Goal. • Development of the Basic Correction Algorithm. • Designing a Plant Model. • Development of Correction Curves. • Operation of the Power Plant during the Test. All nomenclature in this paper utilizes the ASME PTC 46 definitions for the calculation and correction of plant performance.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 112 ◽  
Author(s):  
Yonghong Guo ◽  
Huimin Wei ◽  
Xiaoru Yang ◽  
Weijia Wang ◽  
Xiaoze Du ◽  
...  

Author(s):  
Yousef M. Abdel-Rahim

Present paper studies the optimal characteristics of the two-stage cascade R134A refrigeration system with flash and mixing chambers over its operating ranges of all cycle controlling parameters. The COP, total heat rate in Qin, total work rate in Win and second law efficiency ηII are used as cycle performance parameters. Compared to the practically-limited other rate-based optimization methods and to other experimentally-optimized specific cases of cycle parameters, the application of Monte Carlo method has proved to be very effective for optimizing the cycle performance in its global sense over all cycle controlling parameters. Correlations relating performance and cycle controlling parameters are presented and discussed. Study shows that COP of the cycle can reach a value of 8 at intermediate pressure P2 of about 200 kPa, and a maximum value of 9.92 at about 370 kPa and 720 kPa, beyond which COP goes as low as 4.2. P2 alone has no significant effect on Qin, Win and ηII unless values of other controlling parameters are specified. Values of Qin, Win and ηII can reach as high as 94 kW, 23 kW and 0.85 and as low as 6.8 kW, 1.1 kW and 0.57 respectively depending on other cycle parameters. Neither pressure ratio nor volume ratio of the HP compressor has any effect on Qin, Win or ηII. However, the ratio of inlet to exit temperatures of the condenser has the greatest effect on both ηII and the volumetric specific work of the HP compressor, which is about double the value of the volumetric specific work of the LP compressor. Study shows an almost linear relationship between the two mass flow rates in the upper and lower loops of the cycle, where its value in the lower LP loop is about 75% that in the upper HP loop. Findings of the present work as well as the elaborate application of Monte Carlo method to real cycles can greatly open the way for reducing the trade-off design methods currently used in developing such systems as well as direct the useful experimentations and assessment of such designed systems.


Author(s):  
S.S. Mote ◽  
D.S. Chauhan* and Nilotpal Ghosh1

The study was undertaken to evaluate the effect of different macro climatic variables on lactation milk yield and lactation length of Holdeo (Holstein Friesian x Deoni) crossbred cattle. Milk data of 145 Holdeo crossbred cows with 619 lactation records and the meteorological data over a period of 15 years (1995-2009) were obtained from Cattle Cross Breeding Project, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani and University Meteorological Observatory, respectively. It was observed that maximum temperature has significant correlation with lactation milk yield; whereas maximum temperature, minimum temperature, sunshine hours and wind speed have significant correlation with lactation length. Regression analysis indicated that all the climatic variables except minimum temperature exhibited significant regression results with lactation milk yield, and maximum temperature, minimum temperature and maximum humidity have significant regression results with lactation length. All the climatic variables considered in the study accounted for 75 % and 65 % direct variation on lactation milk yield and lactation length, respectively, as verified by the value of coefficient of determination (R2). It was observed that lactation milk yield (1136.56 + 21.04 kg.) and lactation length (295.29 + 5.51 days) were highest among the cows calved during winter season as compared to rainy and summer season. All the climatic variables considered in the study accounted for 57% , 56 % and 48 % direct variation on milk yield and 68% , 53 % and 46 % direct variation on lactation length in rainy, winter and summer season, respectively, as verified by the value of coefficient of determination (R2). This research indicated that crossbred cows were sensitive to seasonal changes on their lactation performance. The optimum ranges of temperature; humidity and THI for better performance of crossbred in subtropical region of India were found to be 19-26 oC, 52-66 % and 65-68 %, respectively.


NDT World ◽  
2021 ◽  
pp. 21-23
Author(s):  
Denis Shorikov ◽  
Aleksandra Melnikova

The eddy current NDT method has been successfully used at Russian nuclear power plants for more than 20 years, but there are still problems with assessing the reliability of the results. Software product of Zetec Inc. (USA) RevospECT® Pro allows you to automatically analyze and compare the monitoring results of the same object, obtained at different times, which allows you to track the development of defects. Thanks to a unique system for collecting and analyzing information, its ability to self-study, RevospECT® Pro is able to make decisions on its own, replacing the level II specialist in full.


Sign in / Sign up

Export Citation Format

Share Document