Thermodynamic Study on the Performance of Suction Cooling and Regenerative Gas Turbine

Author(s):  
Niu Limin ◽  
Zheng Qun

A suction cooling and regenerative gas turbine plant is proposed in this paper. The power plant is composed of a single-stage absorption-type refrigerator (with an air cooler for suction cooling) and a regenerative gas turbine. Better performance is obtained with the decrease of air inlet temperature, or the increase of cycle temperature ratio and with careful balance of exhaust waste heat between the regenerator and the evaporator of the refrigerator. The results of thermodynamic study indicate that the compound power plant is of significant efficiency and output power, in addition, it is not so sensitive to ambient temperature as simple cycle gas turbine.

Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


2019 ◽  
Vol 114 ◽  
pp. 07005 ◽  
Author(s):  
Alexey V. Mikheev ◽  
Yulia M. Potanina

A developed mathematical model of a gas turbine power plant with an additional air bottoming cycle to utilize heat of exhaust gases was used to carry out a technical and economic analysis. The approach used in the study is aimed at solving two types of optimization problems: (1) to determine the maximum net efficiency of the power plant and (2) to adjust the equipment and operating parameters for achieving minimum costs of electricity production. The study shows that the air bottoming cycle provides an increase in the net efficiency up to 44 - 48% and adds about 20% to the installed power capacity. The minimum costs of electric energy production estimated for different prices of fuel (natural gas) are competitive enough, so the gas turbine power plant with air bottoming cycle seems to be a promising technology for medium-power generation.


Author(s):  
Hans Joachim Krautz ◽  
Rolf Chalupnik ◽  
Franz Stuhlmu¨ller

A 200 kWth test plant was constructed by BTU Cottbus for the purpose of developing a special variant of coal conversion based on 2nd generation PFBC. This concept, primarily to be used for generating power from lignite, employs a circulating type fluidized bed and is characterized by a design that combines the two air-blown steps “partial gasification” and “residual char combustion” in a single component. The subject of this paper is to develop an overall power plant concept based on this process, and to perform the associated thermodynamic calculations. In addition to the base concept with one large heavy-duty Siemens gas turbine V94.3A fired with Lausitz dried lignite (19% H2O), further versions with variation of Siemens gas turbine model (V94.3A and V64.3A), the water content of the fuel fired (raw lignite with more than 52% H2O or dried lignite) as well as the method of drying the coal were investigated. Common assumptions for all versions were ISO conditions for the ambient air and a condenser pressure of 0.05 bar. As expected, the calculations yielded very attractive net efficiencies of almost 50% (LHV based) for a variant with the small V64.3A gas turbine and up to more than 55% for the large plants with the V94.3A gas turbine. It was further demonstrated that thermodynamic integration of an advanced, innovative coal drying process (e.g. fluidized-bed drying with waste heat utilization) causes an additional gain in net efficiency of about three percentage points compared with the variant of firing lignite that was first dried externally. In addition to the basic function of the coal conversion system, it was necessary to also assume preconditions such as complete carbon conversion, reliable hot gas cleaning facilities and fuel gas properties that are acceptable for combustion in the gas turbine. Put abstract text here.


Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


Author(s):  
Geoffrey D. Woodhouse

The gas turbine engine has been examined as a power plant for military tracked vehicles for over 30 years. Advocates have stressed the potentially high power density and high reliability as factors in favor of the turbine. Several turbine engines have been evaluated experimentally in military tracked vehicles resulting in a better understanding of such aspects as response characteristics and air inlet filtration requirements. Moreover, although the small volume and light weight of aircraft derivative gas turbines have certain virtues, it generally has been concluded that some form of waste heat recuperation is essential to achieve an acceptable level of fuel consumption, despite the increased weight and volume incurred. The selection of the AVCO Lycoming AGT1500 recuperated gas turbine as the power unit for the U.S. Army new M1 “Abrams” main battle tank was a major milestone in the evolution of gas turbine engines for tank propulsion.


Author(s):  
R. Yadav ◽  
P. Sreedhar Yadav

The major challenges before the design engineers of a gas turbine plant and its variants are the enhancement of power output, substantial reduction in NOx emission and improvement in plant thermal efficiency. There are various possibilities to achieve these objectives and humid air gas turbine cycle power plant is one of them. The present study deals with the thermodynamic study of humid air gas turbine cycle power plants based on first law. Using the modeling and governing equations, the parametric study has been carried out. The results obtained will be helpful in designing the humid air gas turbines, which are used as peaking units. The comparison of performance of humid air gas turbine cycle shows that it is superior to basic gas turbine cycle but inferior and more complex to steam injected cycle.


Sign in / Sign up

Export Citation Format

Share Document