Gas Turbine Power Systems for Military Tracked Vehicles

Author(s):  
Geoffrey D. Woodhouse

The gas turbine engine has been examined as a power plant for military tracked vehicles for over 30 years. Advocates have stressed the potentially high power density and high reliability as factors in favor of the turbine. Several turbine engines have been evaluated experimentally in military tracked vehicles resulting in a better understanding of such aspects as response characteristics and air inlet filtration requirements. Moreover, although the small volume and light weight of aircraft derivative gas turbines have certain virtues, it generally has been concluded that some form of waste heat recuperation is essential to achieve an acceptable level of fuel consumption, despite the increased weight and volume incurred. The selection of the AVCO Lycoming AGT1500 recuperated gas turbine as the power unit for the U.S. Army new M1 “Abrams” main battle tank was a major milestone in the evolution of gas turbine engines for tank propulsion.

Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


1988 ◽  
Vol 110 (4) ◽  
pp. 572-577
Author(s):  
D. J. Folenta

This paper presents a brief description and several illustrations of a new concept of marine reversing gears that utilize high-performance differentially driven epicyclic gear arrangements. This new marine power transmission has the potential to offer high reliability, simplicity, light weight, high mechanical efficiency, compactness, and technological compatibility with aircraft derivative marine gas turbine engines. Further, this new reversing gear minimizes the danger of driving the free turbine in reverse as might be the case with conventional parallel shaft reversing gear arrangements. To illustrate the weight reduction potential, a modern naval ship propulsion system utilizing an aircraft derivative gas turbine engine as the prime mover in conjunction with a conventional parallel shaft reversing gear can be compared to the subject reversing gear differential. A typical 18,642 kW (25,000 hp) marine gas turbine engine might weigh approximately 5000 kg (11,000 lb) and a conventional marine technology parallel shaft reversing gear might weigh on the order of 90,000 to 136,000 kg (200,000 to 300,000 lb). Using gear technology derived from the aircraft industry, a functionally similar differentially driven marine reversing gear might weigh approximately 13,600 kg (30,000 lb).


Author(s):  
James Anthony Kluka ◽  
David Gordon Wilson

One of the significant problems plaguing regenerator designs is seal leakage resulting in a reduction of thermal efficiency. This paper describes the preliminary design and analysis of a new regenerative heat-exchanger concept, called a modular regenerator, that promises to provide improved seal-leakage performance. The modular regenerator concept consists of a ceramic-honeycomb matrix discretized into rectangular blocks, called modules. Separating the matrix into modules substantially reduces the transverse sealing lengths and substantially increases the longitudinal sealing lengths as compared with typical rotary designs. Potential applications can range from small gas-turbine engines for automotive applications to large stationary gas turbines for industrial power generation. Descriptions of two types of modular regenerators are presented including sealing concepts. Results of seal leakage analysis for typical modular regenerators sized for a small gas-turbine engine (120 kW) predict leakage rates under one percent for most seal-clearance heights.


1973 ◽  
Vol 95 (3) ◽  
pp. 191-198 ◽  
Author(s):  
D. J. White ◽  
P. B. Roberts ◽  
W. A. Compton

In recent years automotive engine emissions have become subject to stringent Federal legislation. The most severe of these regulations pertains to the 1976 Emission Standards as defined by the Advanced Automotive Power Systems (AAPS) Division of the Environmental Protection Agency (EPA). A unique combustor concept has been developed by Solar which has demonstrated the feasibility of meeting these emission requirements. The integrated emissions of a typical regenerative gas turbine engine employing this combustor type were each below one half of the levels specified by the Federal 1976 Standards, when tested over a simulated federal driving cycle. The success of the feasibility tests for this combustor concept has lead to more fundamental studies and the planned development of a prototype combustor for demonstration on the EPA-AAPS baseline gas turbine engine. The prototype combustor for the baseline engine is described together with its variable area port mechanisms, which has been demonstrated as necessary for emission control.


Author(s):  
Kenneth M. Braccio ◽  
Joe Ranero ◽  
Peter B. Nilsson ◽  
Magnus Olsson ◽  
Gerrick Slogar

The YS2000 program is a 73 meter length and 10.5 meter width all composite Corvette class vessel. It displaces 640 metric tons when fully equipped and drafts 2.5 meters. It is to be crewed by 18 officers and 25 enlisted men. It is a CODOG propulsion system supplied by Vericor Power Systems, with two MTU 16V 2000 M90 diesels and four TF50A gas turbine engines. Both the diesels and gas turbines are connected to a pair of MA-107 SBS gearboxes that run two 125 SII KaMeWa waterjets. The Visby is designed to be difficult to detect by enemy using radar, infrared, hydro-acoustic monitoring or any other sensor system. The Visby has been in development In Sweden since 1999. To date, four craft have been constructed and sea trailed out of the five totals. The fifth ship is on schedule to complete construction and sea trials later in the 2006 year. Many refinements to the overall propulsion package and related supporting systems have been incorporated since the first ship “Visby” has been sea trailed and since put in service. This paper will review various areas of the propulsion package, explaining the challenges that had to be overcome. The areas of interest will include: the FADEC digital engine control, the exhaust & inlet systems, the turbine engine and starting system, engine room cooling and turbine engine enclosures. The paper will focus on some of the before and after results and attempts to highlight the specific challenges that had to be overcome.


Author(s):  
Filip Niculescu ◽  
Claudia Borzea ◽  
Adrian Savescu ◽  
Andrei Mitru ◽  
Mirela Letitia Vasile

Gas turbines used in propulsion ensure increased efficiency and safety, with a very good power / weight ratio and with low maintenance and operation costs. Due to becoming out-of-date and reaching the maximum operation hours and expected lifetime, which can cause malfunctioning, older turbine engines on frigates need to be replaced with newer generation propulsion engines. The paper presents the replacement of the turbine engine on a defence frigate, focusing on the automation and electronic control solution employed for a propulsion turbine, integrating state-of-the-art techniques. The electronic system ensures control, monitoring and alarm functions, including overspeed protection. A local control panel interfacing the PLC displays the operating parameters and engine controls, also providing maintenance and calibration sequences. The proposed solution enables both the local and the remote control of the ship’s gas turbine.


1970 ◽  
Author(s):  
N. K. H. Scholz

The effect of the main design parameters of the aero gas turbine engine cycle, namely combustion temperature and compression pressure ratio, on the specific performance values is discussed. The resulting development trend has been of essential influence on the technology. Relevant approaches are outlined. The efforts relating to weight and manufacturing expense are also indicated. In the design of aero gas turbine engines increasing consideration is given to the specific flight mission requirements, such as for instance by the introduction of the by-pass principle. Therefore direct application of aero gas turbine engines for ship propulsion without considerable modifications, as has been practiced in the past, is not considered very promising for the future. Nevertheless, there are possibilities to take advantage of aero gas turbine engine developments for ship propulsion systems. Appropriate approaches are discussed. With the experience obtained from aero gas turbine engines that will enter service in the early seventies it should be possible to develop marine gas turbine engines achieving consumptions and lifes that are competitive with those of advanced diesel units.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Oleksandr Cherednichenko ◽  
Valerii Havrysh ◽  
Vyacheslav Shebanin ◽  
Antonina Kalinichenko ◽  
Grzegorz Mentel ◽  
...  

Growing economies need green and renewable energy. Their financial development can reduce energy consumption (through energy-efficient technologies) and replace fossil fuels with renewable ones. Gas turbine engines are widely used in transport and industry. To improve their economic attractiveness and to reduce harmful emissions, including greenhouse gases, alternative fuels and waste heat recovery technologies can be used. A promising direction is the use of alcohol and thermo-chemical recuperation. The purpose of this study is to estimate the economic efficiency and carbon dioxide emissions of an alcohol-fueled regenerative gas turbine engine with thermo-chemical recuperation. The carbon dioxide emissions have been determined using engine efficiency, fuel properties, as well as life cycle analysis. The engine efficiency was maximized by varying the water/alcohol ratio. To evaluate steam fuel reforming for a certain engine, a conversion performance factor has been suggested. At the optimal water/methanol ratio of 3.075 this technology can increase efficiency by 4% and reduce tank-to-wake emission by 80%. In the last 6 months of 2019, methanol prices were promising for power and cogeneration plants in remote locations. The policy recommendation is that local authorities should pay attention to alcohol fuel and advanced turbines to curb the adverse effects of burning petroleum fuel on economic growth and the environment.


1958 ◽  
Vol 62 (573) ◽  
pp. 646-654 ◽  
Author(s):  
A. W. Morley

Rapid developments in the use of the helicopter were made in the Korean War. These were taking place at the time when there was considerable urge to introduce the gas turbine engine into the civil aircraft market. It was also a time when much effort was being expended on various forms of reaction propulsion, mostly for missiles. A number of new helicopter projects were started, taking advantage of the new knowledge in propulsion engineering; some utilised new gas turbine designs and others various forms of tip jet reaction. Liquid fuel rockets, ram-jets, pulse-jets and air pressure jets were tried. However, the main line of development continued to be the gradual improvement of direct mechanical drive.Since Korea the natural trend has been first to convert existing helicopters to turbine engines. When new helicopters were designed wisdom dictated mechanical drive pending the gathering of sufficient experience with other forms of rotor power, and so far the accumulated knowledge of the mechanical drive has proved of greater value to helicopter progress than the potential advantages offered by the alternative engine forms.


Sign in / Sign up

Export Citation Format

Share Document