scholarly journals Injector Geometry Effect on Plain Jet Airblast Atomisation

Author(s):  
Paul J. O’Shaughnessy ◽  
Richard J. Bideau ◽  
Qing-ping Zheng

Airblast atomisation drop size is a function of the liquid and gas flow conditions. It is also subject to the atomisation geometry, or more specifically the jet breakup mechanism. Plain jet atomisation featuring coaxial air and fuel flows has been investigated to assess the injector geometry effect on the spray characteristics. Results from various flow conditions and atomiser configurations suggest that a prompt atomisation correlation that was evaluated for prefilming injectors can be applied to plain jet airblast atomisation, in a slightly modified form. Changes in the velocity term are necessary to fit the measured data. A scaling factor has been established to compensate for the velocity term change. This factor may also imply the underlying difference between flat sheet and round jet atomisation. The liquid atomisation mode is dependent not only on the manner of geometrical air-liquid contact but also on flow conditions. In this study, the combined air-fuel velocity ratio VR and Weber number (WeVR) is found to be a criteria that determines the air flow pattern influence on atomisation. Data from this experiment show that a small change in the axial distance between the liquid jet and air orifice entrance results in marked difference in spray drop mean size under low air momentum flow conditions.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 918
Author(s):  
Li-Mei Guo ◽  
Ming Lü ◽  
Zhi Ning

Based on the linear stability analysis, a mathematical model for the stability of a viscous liquid jet in a coaxial twisting compressible airflow has been developed. It takes into account the twist and compressibility of the surrounding airflow, the viscosity of the liquid jet, and the cavitation bubbles within the liquid jet. Then, the effects of aerodynamics caused by the gas–liquid velocity difference on the jet stability are analyzed. The results show that under the airflow ejecting effect, the jet instability decreases first and then increases with the increase of the airflow axial velocity. When the gas–liquid velocity ratio A = 1, the jet is the most stable. When the gas–liquid velocity ratio A > 2, this is meaningful for the jet breakup compared with A = 0 (no air axial velocity). When the surrounding airflow swirls, the airflow rotation strength E will change the jet dominant mode. E has a stabilizing effect on the liquid jet under the axisymmetric mode, while E is conducive to jet instability under the asymmetry mode. The maximum disturbance growth rate of the liquid jet also decreases first and then increases with the increase of E. The liquid jet is the most stable when E = 0.65, and the jet starts to become more easier to breakup when E = 0.8425 compared with E = 0 (no swirling air). When the surrounding airflow twists (air moves in both axial and circumferential directions), given the axial velocity to change the circumferential velocity of the surrounding airflow, it is not conducive to the jet breakup, regardless of the axisymmetric disturbance or asymmetry disturbance.


1960 ◽  
Vol 64 (598) ◽  
pp. 632-635 ◽  
Author(s):  
R. A. A. Bryant

The concept of small stage efficiency is introduced when studying one-dimensional gas flow in nozzles in order to permit a closer approximation of real flow conditions than is possible from an isentropic analysis. It is more or less conventional to assume the flow conditions are adiabatic whenever the small stage efficiency is used. That is to say, small stage efficiency is generally considered in relation to flows contained within adiabatic boundaries, in which case it becomes a measure of the heat generated by internal frictional effects alone.


2021 ◽  
Vol 12 ◽  
pp. 366-374
Author(s):  
S Javad Rezvani ◽  
Luc Favre ◽  
Gabriele Giuli ◽  
Yiming Wubulikasimu ◽  
Isabelle Berbezier ◽  
...  

We report experimental evidence for a spontaneous shape transition, from regular islands to elongated nanowires, upon high-temperature annealing of a thin Mn wetting layer evaporated on Ge(111). We demonstrate that 4.5 monolayers is the critical thickness of the Mn layer, governing the shape transition to wires. A small change around this value modulates the geometry of the nanostructures. The Mn–Ge alloy nanowires are single-crystalline structures with homogeneous composition and uniform width along their length. The shape evolution towards nanowires occurs for islands with a mean size of ≃170 nm. The wires, up to ≃1.1 μm long, asymptotically tend to ≃80 nm of width. We found that tuning the annealing process allows one to extend the wire length up to ≃1.5 μm with a minor rise of the lateral size to ≃100 nm. The elongation process of the nanostructures is in agreement with a strain-driven shape transition mechanism proposed in the literature for other heteroepitaxial systems. Our study gives experimental evidence for the spontaneous formation of spatially uniform and compositionally homogeneous Mn-rich GeMn nanowires on Ge(111). The reliable and simple synthesis approach allows one to exploit the room-temperature ferromagnetic properties of the Mn–Ge alloy to design and fabricate novel nanodevices.


2020 ◽  
Vol 2 (1) ◽  
pp. 28
Author(s):  
Tommaso Tabanelli ◽  
Paola Blair Vásquez ◽  
Emilia Paone ◽  
Rosario Pietropaolo ◽  
Nikolaos Dimitratos ◽  
...  

Levulinic acid (LA) and its esters (alkyl levulinates) are polyfunctional molecules that can be obtained from lignocellulosic biomass. Herein, the catalytic conversion of methyl and ethyl levulinates into γ-valerolactone (GVL) via catalytic transfer hydrogenation (CTH) by using methanol, ethanol, and 2-propanol as the H-donor/solvent, was investigated under both batch and gas-flow conditions. In particular, high-surface-area, tetragonal zirconia has proven to be a suitable catalyst for this reaction. Isopropanol was found to be the best H-donor under batch conditions, with ethyl levulinate providing the highest yield in GVL. However, long reaction times and high autogenic pressures are needed in order to work in the liquid-phase at high temperature with light alcohols. The reactions occurring under continuous gas-flow conditions, at atmospheric pressure and a relatively low contact time (1 s), were found to be much more efficient, also showing excellent GVL yields when EtOH was used as the reducing agent (GVL yield of around 70% under optimized conditions). The reaction has also been tested using a true bio-ethanol, derived from agricultural waste. These results represent the very first examples of the CTH of alkyl levulinates under continuous gas-flow conditions reported in the literature.


2020 ◽  
Vol 132 ◽  
pp. 103407
Author(s):  
Ehsan Mohseni ◽  
Jaunty Jose Kalayathine ◽  
Sebastian Felix Reinecke ◽  
Uwe Hampel

2019 ◽  
Vol 35 (5) ◽  
pp. 693-704
Author(s):  
Jin Zhao ◽  
Zhi Ning ◽  
Ming Lü

ABSTRACTThe two-phase flow pattern of a flow mixing nozzle plays an important role in jet breakup and atomization. However, the flow pattern of this nozzle and its transformation characteristics are still unclear. A diesel-air injection simulation model of a flow mixing nozzle is established. Then the two-phase flow pattern and transformation characteristics of the flow mixing nozzle is studied using a numerical simulation method. The effect of the air-diesel velocity ratio, ratio of the distance between the tube orifice and nozzle hole and the tube diameter (H/D), and the diesel inlet velocity was studied in terms of the jet breakup diameter (jet diameter at the breakup position) and jet breakup length (length of the diesel jet from the breakup position to the nozzle outlet). The results show that the jet breakup diameter decreases with the decrease in H/D or the increase in the air-diesel velocity ratio and diesel inlet velocity. The jet breakup length increases first and then decreases with the increase in H/D and air-diesel velocity ratio; the trend of the diesel inlet velocity is complicated. In addition, a change in the working conditions also causes some morphological changes that cannot be quantitatively analyzed in the diesel-air flow pattern. The transition characteristics of the flow pattern are analyzed, and it is found that the main reason for the change in the flow pattern is the change in the inertial force of the air, surface tension force, and viscous force of diesel (non-dimensional Reynolds number and Weber number describe the transition characteristics in this paper). The surface tension force of diesel decreases and the viscous force of diesel and inertial force of air increase when the air-diesel velocity ratio increases or H/D decreases. However, the effects of the diesel surface tension force and viscous force effect are much smaller than that of the air inertial force, which changes the diesel-air flow pattern from a drop pattern to a vibration jet pattern, broken jet pattern, and then a chaotic jet pattern.


1970 ◽  
Vol 43 (5) ◽  
pp. 1230-1254 ◽  
Author(s):  
G. J. Lake

Abstract Studies of the growth of single ozone cracks show that a critical severity of deformation is required for growth to occur. Above this deformation the rate of single crack growth is essentially independent of strain and for a number of rubbers at normal temperatures is proportional to the ozone concentration. The mechanics of cracking in stretched surfaces is more complex, the rate of growth being dependent on strain and on various other factors such as the gas flow conditions and the test piece size. It is shown that these effects are consistent with diffusion control of the rate of attack; this occurs because the rapidity with which ozone is destroyed by stretched rubber leads to a reduced concentration adjacent to a surface. Certain chemical antiozonants can completely prevent cracking, even at very high deformations. Current investigations suggest that this is due to the formation of a protective layer on the surface of the rubber by direct reaction of the antiozonant with ozone; the diffusion of unreacted antiozonant is an important factor influencing layer development. It appears that the amount of antiozonant required for protection may be determined by the rate at which a coherent layer can be formed in relation to the rate at which ozone is attacking the surface.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 989
Author(s):  
Zegao Yin ◽  
Qianqian Jia ◽  
Yuan Li ◽  
Yanxu Wang ◽  
Dejun Yang

The behavior of a vertical plunging jet was numerically investigated using the coupled Level Set and Volume of Fluid method. The computational results were in good agreement with the experimental results reported in the related literature. Vertical plunging jet characteristics, including the liquid velocity field, air void fraction, and turbulence kinetic energy, were explored by varying the distance between the nozzle exit and the still water level. It was found that the velocity at the nozzle exit plays an unimportant role in the shape and size of ascending bubbles. A modified prediction equation between the centerline velocity ratio and the axial distance ratio was developed using the data of the coupled Level Set and Volume of Fluid method, and it showed a better predicting ability than the Level Set and Mixture methods. The characteristics of turbulence kinetic energy, including its maximum value location and its radial and vertical distribution, were also compared with that of submerged jets.


Author(s):  
Donato M. Palermo ◽  
Feng Gao ◽  
John W. Chew ◽  
Paul F. Beard

Abstract A systematic study of sealing performance for a chute style turbine rim seal using URANS methods is reported. This extends previous studies from a configuration without external flow in the main annulus to cases with a circumferentially uniform axial flow and vane generated swirling annulus flow (but without rotor blades). The study includes variation of the mean seal-to-rotor velocity ratio, main annulus-to-rotor velocity ratio, and seal clearance. The effects on the unsteady flow structures and the degree of main annulus flow ingestion into the rim seal cavity are examined. Sealing effectiveness is quantified by modeling a passive scalar, and the timescales for the convergence of this solution are considered. It has been found that intrinsic flow unsteadiness occurs in most cases, with the presence of vanes and external flow modifying, the associated flow structures and frequencies. Some sensitivities to the annulus flow conditions are identified. The circumferential pressure asymmetry generated by the vanes has a clear influence on the flow structure but does not lead to higher ingestion rates than the other conditions studied.


2002 ◽  
Author(s):  
Jared E. Campbell ◽  
Richard W. Coppom

Experiments were conducted to better understand the flow physics associated with axial flow mixers in pipes. Specifically, the dependence of the downstream mixing evolution on the velocity ratio of the secondary to primary stream was explored. Experiments were conducted in a 25.4 mm diameter water pipe flow loop (25,700 ≤ RD ≤ 28,500), in which a fluorescein dye was coaxially injected. The injection tube diameter was 1.5 mm. Three velocity ratios, VR = 0.5, 1.0 and 2.0 were explored, where VR = Vjet/Vmain. The present results indicate that the effects of velocity ratio on the mean concentration are primarily evident in the near-field flow downstream of the injector, while concentration variance measurements indicate a primary influence at intermediate axial locations. Analysis of higher order moments and flow visualizations suggest that these influences are associated with the injected flow conditions. Two-dimensional LIF analysis of the coherent jet breakup region showed an instability in this transition related to injector flow Reynolds number. The present concentration measurements do not indicate the exponential variance decay commonly used for modelling mixing in pipes. Far field data exhibit low wavenumber motions as predicted by the recent theory of Guilkey et al. (1997).


Sign in / Sign up

Export Citation Format

Share Document