Environomic Optimization for Combined Plants Including CO2 Influence

Author(s):  
M. Santarelli ◽  
R. Borchiellini ◽  
A. F. Massardo

In the paper two environomic procedures for the analysis and the optimization of energy systems, where environmental considerations are taken into account together with thermodynamic and economic ones, are presented. The aim is the assignment to energy plants of costs linked to their pollutant activities. The problem is faced with two different environomic approaches: (a) a method assigning a cost to the pollutant emissions (environmental cost); (b) a method assigning a cost to the exergy destroyed inside the system and rejected in the biosphere with the plant wastes (efficiency penalty). As an example the environomic analysis is developed considering the pollutant emissions (CO, NOx and SOx) of an existing 700 MW combined power plant. Finally, a procedure to determine an efficiency penalty to the emitted CO2 is presented, and a comparison is developed between the results obtained by the two environomic approaches.

2000 ◽  
Author(s):  
R. Borchiellini ◽  
M. Calì ◽  
M. Santarelli

Abstract In the paper the authors analyse how the application of an extended environomic procedure, based on charges linked to the pollutant activities of energy systems, influences the energy behaviour of energy systems. If in the economic balance of an energy plant a cost is assigned only to the pollutant emissions (Environmental Cost), it can be shown that this choice allows a good promotion of the abatement devices and of the switching fuel approach, but the efficient utilization of energy resources is not sufficiently promoted. The extended approach, here analysed, takes into account both the pollutant emissions and the inefficient use of energy resources. In the proposed method, on the basis of thermodynamic considerations, a cost is assigned to the exergy rate destroyed inside the system and to the exergy flows rejected into the biosphere with the plant wastes (Efficiency Penalty). Many calculations have been developed using different sets of both the Environmental Cost and the Efficiency Penalty; assigning different weights to them. The calculations have been applied to a 30 MWel gas turbine cogeneration power plant (CGAM), and to an existing 350 MW combined cycle, considering the pollutant emissions of CO, NOx, SOx and CO2. The obtained results show that this approach can become a real energy policy instrument: in fact it allows to stimulate high efficiency design of conventional plants and advanced high-efficiency low-pollutant energy systems, becoming an opportunity to disseminate advanced technologies that still have difficulties to compete in the energy market due to their high investment costs.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


2011 ◽  
Vol 347-353 ◽  
pp. 631-634
Author(s):  
Qin Liang Tan ◽  
Cai Juan Zhang ◽  
Xiao Ying Hu ◽  
Li Gang Wang ◽  
Qiang Lu ◽  
...  

Biomass direct combustion power generation is the most simple but effective way in dealing with environmental issues and energy crisis. A comprehensive diagnosis with accurate evaluation of energy saving potential of a given biomass power plant is of great importance in lowing the cost of generating electricity, reducing the consumption of energy and pollutant emissions [1]. This paper throws light upon an innovative energy consumption diagnosis method-the specific consumption analysis theory, which is based on the First and Second law of thermodynamics [2,3]. Taking a given biomass power plant of National Energy Group as an example, mathematical models are made based on all the components and processes. The specific consumption analysis theory is employed to calculate the specific consumption within the biomass power plant using design parameters under design operating conditions, thus demonstrating the specific consumption distribution in the power plant, which provides theoretical basis for energy-saving and optimization in biomass power plant.


Author(s):  
Irina Anatolievna Borovikova

The article touches upon reliability issues of energy management systems (EMS) of marine power plants in emergency situations caused by disturbance of the working media consumption and their subsequent recovery. The mathematical model of processes allows to determine the nature of changes in temperature and pressure of water and lube oil in EMS systems. The requirements to the characteristics of automatic control systems of the marine power plant have been formulated. Basic provisions of the reliability theory are followed by presentation of methods of calculating reliability indices of complex technical systems. The article presents the results of the study of non-stationary modes and reliability indices. Reasonable requirements for automated control systems were obtained through the analysis of working environments and of equipment operating in non-stationary modes, non-exceedance of safety limits of marine power plant operation being taken as the admissibility criterion. Besides, there are possible special modes resulted from emergency situations caused by the power plant equipment failure. Hence, for operation and design of the analyses it is important to study changes of working media in the circulation systems, which resulted from the failure of the pumps. Basic circuit of lubrication and cooling systems of the ship diesel power plants has been approved as recommended by the company "MAN B&W" for slow speed diesel engines standard series MC. Among the recommended schemes there was approved the scheme of the main engine with an autonomous cooling circuit. Schematic diagram of energy systems of a diesel power plant has been made under recommendations of the engine developer. Specifications of the component parts of the ship diesel power plant have been taken as standard for manufactured machinery. A low running L90MC-C four-cylinder main engine manufactured by "MAN B&W" was chosen as a research sample. A mathematical model, as applied to the given problem, consists of 10 algebraic equations for nonsteady working media consumption and 18 differential equations for nonsteady heat transfer in heat exchangers, as well as equations for transport delay in the lubrication systems of internal combustion engines.


World reserves of fossil fuels are sufficient for many decades of increasing usage. During the next few decades at least, fossil fuels will be much the most important energy source. These fuels should be exploited in a complementary manner. Coal represents much the largest potential reserve, followed probably by hydrocarbons less easily utilized than those commonly being exploited now. Techniques exist for the conversion of coal into coke and carbons, electricity, gas and substitute oil-feed stock. Improvements in these processes are possible but their large-scale introduction depends on economics. Where coal burning can meet a requirement (local heat or steam, or electricity generation) fluidized combustion can be the most efficient process; better integration with mining techniques are possible and environmental considerations are favourable. Fluidized combustion would be a high priority unit in a ‘ Coalplex ’ which could have electricity, gas and oil as possible products. The best mix could depend on the value ascribed to the products and this in turn invokes consideration of the overall economics of energy storage, transport and demand flexibility. Looking farther ahead, coal will certainly remain a vital chemical component for various proposed energy systems and will also probably be able to compete as the energy input into conversion schemes. The technology of coal utilization may also have applications for other fossil fuels.


2020 ◽  
Vol 12 (22) ◽  
pp. 9449
Author(s):  
Hossein Nami ◽  
Amjad Anvari-Moghaddam ◽  
Ahmad Arabkoohsar ◽  
Amir Reza Razmi

The combination of a waste-driven hybrid heat and power plant with a small organic Rankine cycle unit was recently proposed and investigated from a thermodynamic perspective. The present study provides a more comprehensive assessment from system operation through considering the energy, exergy, exergoeconomic, and exergoenvironmental (4E) aspects in a revised design of this concept to obtain a bigger picture of the system’s technical, economic, and environmental effects on existing and future energy systems. The revised design includes a flue gas condensation unit and alternative friendly organic working fluids. For this, the hybrid plant is modeled for its thermal, economic, and environmental performances. Then, the exergy losses and environmental effects of the system are scrutinized, the cost of losses and pollutions are predicted, and lastly, sorts of solutions are introduced to improve the exergoeconomic and exergoenvironmental performances of the system. The results indicate that the highest share of exergy destruction relates to the incineration (equipped with a steam generator) with a levelized cost of approximately USD 71/h for a power plant with almost 3.3 megawatt electricity output capacity. The hybridization proposal with the flue gas condensation unit increases the sustainability index of the system from 1.264 to 1.28.


2019 ◽  
Vol 113 ◽  
pp. 02005
Author(s):  
D. Rattazzi ◽  
M. Rivarolo ◽  
T. Lamberti ◽  
L. Magistri

This paper aims to develop a tool for the performances comparison of innovative energy systems on board ships, both for concentrated and distributed generation applications. In the first part of the study, the tool database has been developed throughout a wide analysis of the available market solutions in terms of energy generation devices (i.e. fuel cells, internal combustion engines, micro gas turbines), fuels (hydrogen, natural gas, diesel) and related storage technologies. Many of these data have been collected also thanks to the laboratory experience of the authors’ research group on different innovative energy systems. From the database, a wide range of maps has been created, correlating costs, volumes, weights and emissions with the installed power and the operational hours required, given by the user as input. The tool highlights the best solution according to the different relevance chosen by the user for each key parameter (i.e. costs, volumes, emissions). In the second part, two different case studies are presented in order to underline how the installed power, the different ship typology and the user requirements affect the choice of the best solution. It is worth noting that the methodology has a general value, as the tool can be applied to both the design of new ships, and to the retrofit of already existing ships in order to respect new requirements (e.g. more and more stringent normative in terms of pollutant emissions in ports and restricted areas). Furthermore, the database can be easily extended to other generation and storage technologies.


Sign in / Sign up

Export Citation Format

Share Document