Flow Characteristics of Rectangular Liquid Jets Injected Into Low Subsonic Crossflow

Author(s):  
M. Tadjfar ◽  
A. Jaberi ◽  
R. Shokri

Abstract Perpendicular injection of liquid jets into gaseous crossflow is well-known as an effective way to obtain good mixing between liquid fuel and air crossflow. Mostly, injectors with circular holes were used as the standard method of fuel spraying. However, recently a great attention to injectors with non-circular holes has emerged that aims to improve the quality of fuel mixing and consequently combustion efficiency. In the present work, rectangular injectors with different aspect ratios varying from 1 to 4 were experimentally studied. Using a wind tunnel with maximum air velocity of 42 m/s, tests were performed for a wide range of flow conditions including liquid-to-air momentum ratios of 10, 20, 30 and 40. Backlight shadowgraphy and high speed photography were employed to capture the instantaneous physics of the liquid jets discharged into gaseous crossflow. The flow physics of the rectangular liquid jets were investigated by means of flow visualizations. Different regimes of flow breakup including capillary, arcade, bag and multimode were observed for rectangular jets. Moreover, a new technique was used to calculate the trajectory of the liquid jets. It was shown the nozzle’s shape has no significant effect on jet trajectory. Also, the momentum ratio was found to has a profound effect on jet trajectory.

Author(s):  
Amin Jaberi ◽  
Mehran Tadjfar

Abstract Studying of injectors with non-circular geometries has recently come to the spotlight of researchers as a potential technique to improve the liquid injection characteristics of different systems. In this work, the flow physics and breakup of two-dimensional liquid jets issued from flat slits into still air were experimentally investigated. Three injectors with aspect ratios of 30, 60 and 90 and thickness of 0.35 mm were manufactured to obtain two-dimensional liquid flow at the nozzle exit. The tests were performed for a wide range of volume flow rate, varying from 10 L/h to 240 L/h. Backlight shadowgraphy and high speed photography were employed to capture the flow dynamics of the jets. In order to capture every detail of the flow, photos of the liquid jet were taken from two views with 90° from each other. Using the visualizations, different regimes of the jet flow were explored and a regime map was proposed to distinguish these regimes based on the non-dimensional parameters of the liquid jet. Moreover, quantitative description of the main features of jet flows were obtained using an in-house image processing program. Measurements of different parameters including convergence length, maximum width, breakup length, sheet thickness to name a few, were conducted.


Author(s):  
Amin Jaberi ◽  
Mehran Tadjfar

The instability characteristics and flow structures of water jets injected from rectangular and elliptical nozzles with aspect ratios varying from 2 to 6 were experimentally studied and compared. Shadowgraph technique was employed for flow visualization, and structures on the liquid jet surface were captured using high speed photography. It was found that disturbances originating from the nozzle geometry initially perturbed the liquid column, and then, at high jet velocities, disturbances generated within the flow dominated the jet surface. It was also found that rectangular nozzles introduced more disturbances into the flow than the elliptical ones. The characteristic parameters of axis-switching phenomenon including wavelength, frequency, and amplitude were measured and compared. Axis-switching wavelength was found to increase linearly with Weber number. Also, the wavelengths of rectangular jets were longer than the elliptical jets. Further, the frequency of axis-switching was shown to be reduced with increase of both Weber number and aspect ratio. It was observed that the axis-switching amplitude increased monotonically, reached a peak, and then decreased gradually. It was also found that the axis-switching amplitude varied with Weber number. At lower values of Weber number, the rectangular nozzles had higher amplitude than the elliptical nozzles. However, at higher values of Weber number, this relation was reversed, and the elliptical nozzles had the higher axis-switching amplitudes. This reversal Weber number decreased with the orifice aspect ratio. The reversal Weber number for aspect ratio of 4 was about 289, and it had decreased to 144 for the aspect ratio of 6.


2021 ◽  
Author(s):  
Si. Kasmaiee ◽  
M. Tadjfar ◽  
Sa. Kasmaiee

Abstract One of the most common ways to obtain mixing between liquid and air, is by injecting the liquid jet into an incoming gaseous crossflow. The physics of this mixing flow is very complicated due to the presence of many flow interfacial instabilities. Usually, a perpendicular liquid jet into the cross flow airstream is used as the standard method of mixing. In the present work, the effect of the injection angle of the liquid flow emanated from a circular nozzle into airstream was experimentally investigated. The flow characteristics of the liquid jet were visualized by diffused backlight shadowgraph technique and high-speed photography. Water was used as the working liquid and tests were conducted into an incoming airstream at room temperature and pressure. A circular nozzle with 1.5 mm in diameter was used. The injection angles of the 30, 45, 60 and 90 degrees of the liquid jet into the airstream were considered. Different parameters of liquid jet flow such as breakup length and trajectory were measured. It was found that at low angles the path was independent from the momentum ratio.


Author(s):  
Amin Jaberi ◽  
Mehran Tadjfar

Abstract In this study, a liquid sheet with an aspect ratio of 90 and a thickness of 0.35 was experimentally investigated when issued into a low-speed subsonic crossflow. High speed photography and shadowgraphy technique were employed to capture the instantaneous physics of the liquid sheet. Flow visualizations were used to investigate the flow development of the liquid sheet. It was found that this flow exhibited a completely different flow structure than circular or other non-circular liquid sheets. It was found that the liquid sheet developed a concave-like shape in the presence of the transverse airstream. This phenomenon, named as inflated sheet, was absent in regular circular liquid jets injected into gaseous crossflow. It was revealed the inflated sheet was the main feature of the liquid sheet that made the jet characteristics unique. The flow feature of the inflated sheet structure and its alteration with flow condition was fully examined. Moreover, the width and trajectory of the liquid sheet were quantitatively studied at different Weber numbers and for the constant momentum ratio of 40. It was found that the fluid width could be a useful parameter to distinguish different regimes of the flow.


1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


1975 ◽  
pp. 442-447 ◽  
Author(s):  
D. A. Gorham ◽  
J. E. Field

Author(s):  
Hongfang Gu ◽  
Qiwei Guo ◽  
Changsong Li ◽  
Qing Zhou

Abstract Fog formation occurs in the process of condensation in the presence of non-condensable gas if the bulk temperature is lower than its saturation temperature (supersaturated). The phenomena of fogging is the formation of small condensate particles mixing with the vapor/gas stream, which creates potential problems of the vapor/gas/condensate separation and environmental pollution. Therefore, understanding of fogging mechanism and prevention of fog droplet entrainment are one of technical concerns for design and operation of cooler-condensers in the process industry. This paper presents the experimental study and numerical simulation of shell-side condensation with fog formation using a mixture of steam/non-condensable gas. The experimental data were collected on the two tube bundles (modified plastic tubes and stainless steel tubes). Using a high-speed photograph technique, the phenomenon of fog formation and flow characteristics of vapor/droplet transport were recorded over a wide range of test conditions. The numerical analysis of film and dropwise condensation, fog formation and droplet particle transport were simulated using different tube geometry and material, and flow velocity of air/droplet mixture. Based on simulation results, a new droplet trapping parameter is proposed to assess the optimal parameters of heat exchanger structural and operation conditions. Comparisons show that the numerical analysis results have a good agreement with experimental data and observations. These findings provide fundamental approach to account for the effect of fog formation, film and dropwise condensation, and droplet transport crossflow in cooler-condensers.


2017 ◽  
Vol 31 (10) ◽  
pp. 1750109
Author(s):  
Chao Qiu ◽  
Han Cheng ◽  
Shuxian Chen

Bubble is the heart of the microfluidic chip, which takes a significant role in drug release, biological detection and so on. In this case, bubble flow characteristics in microfluidic chip are the key to realize its function. In this paper, bubble flow characteristics in the microfluidic chip have been studied with high speed photography system by controlling the wettability and the heat flux of the microelectrode surface. The result shows that bubble flows faster on the electrode with hydrophobic surface. In addition, loading current to the electrode with hydrophilic surface could also speed up the movement of bubble, and the flow rate of bubble increases with the increasing heat flux of the electrode.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Tian Deng ◽  
Wei Chen ◽  
Xing-ming Ren ◽  
Shuai Jiang ◽  
Chao-hua Yuan

The experiment is conducted with a high-speed camera to investigate the breakup processes of liquid jets in uniform, shear-laden, and swirling cross-airflows. The liquid used in the test is water, the nozzle diameter is 2 mm, and the liquid-to-air momentum flux ratio q ranges from 5 to 3408.5. The results indicate that liquid jets break up to form small droplets in the uniform cross-airflow. There is an exponential relation between the broken position and q. In the shear-laden cross-airflow, the penetration depth of the jet is similar to that of the uniform case, both of which increase with the increase of q. When q and the mean Weber number are the same as the uniform case, the penetration depth of the jet increases by 25% when the velocity ratio of the upper and lower inlets is UR=5; the jet penetration depth decreases by 47.2% when the ratio of UR=0.2 and the jet breaks up quickly and the atomization effect will be better. In the swirling cross-airflow, the jet trajectory is similar to the uniform case and also satisfies the exponential property. When the swirl is weak (swirling number SN=0.49), the jet penetration depth increases compared to the uniform case; when the swirl is strong (SN=0.82), the cross-swirling airflow restrains the jet penetration depth.


2012 ◽  
Vol 619 ◽  
pp. 107-110 ◽  
Author(s):  
Wen Hua Li ◽  
Wen Lin Shao

Through the analysis of the flow characteristics of the high-speed solenoid valve, the conclusions that the PWM signal duty ratio is the main factor affecting the solenoid valve flow is obtained, a new available any PWM pulse signal and control circuit are proposed. Further, circuit schematic is simulated by means of SIMULINK tools in MATLAB environment and Verify its stability. A time-sharing drive circuit is design based on the PWM drive mode. The driver circuit have function which is high-current open, small current maintain. Open current and maintain current of Solenoid valve can be adjusted through this circuit. Therefore, the circuit can adapt to different parameters of the solenoid valve. A wide range of applications.


Sign in / Sign up

Export Citation Format

Share Document