Design Considerations for Cold Storage Warehousing

Author(s):  
James M. Fiske

A general expansion of existing Cold Storage Warehousing or a program for construction of entirely new facilities calls for the proper analysis of design considerations and, most important, it requires that management properly establish the design consideration or search-out through study and professional advice, all fundamental considerations for analysis. The high cost per unit of warehouse space plus the fact that, once in use, the building and mechanical equipment cannot be readily and inexpensively repaired, changed, or added to makes careful selection and analysis of all considerations most important. Paper published with permission.

2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


1991 ◽  
Vol 34 (2) ◽  
pp. 45-55
Author(s):  
Louie Lipp

Vibration testing, particularly when performed in reliability test chambers, is very costly. Design considerations for vibration expander heads that will accept several test specimens for simultaneous testing are discussed in this report. Well-designed expander heads will provide more meaningful results and reduce test time and costs through maximum utilization of test hardware. This article, the first of a three-part series, discusses natural frequency equations for square, constant thickness expander heads. Parts II and III will cover damping equations for square, constant thickness expander heads and the inverted truncated pyramid expander head. Complete derivations accompany each expander head equation.


1963 ◽  
Vol 20 (4) ◽  
pp. 997-1000
Author(s):  
A. L. Wood

"Green" heavily salted split fish may be pre-cooled within a cold storage area with ice and salt, without imposing an excessive load upon storage refrigeration facilities and with little additional labour. Twelve pounds of ice plus 4 lb of salt per 100 lb of fish, uniformly applied between 3- to 4-inch thick layers of fish, will reduce the bulk fish temperature by 25°F (14 °C) in less than 8 hours.No mechanical equipment is required if flake ice be deemed a commodity. The direct cost may be estimated at less than 15 cents per 100 lb of finished (dried) fish.Pre-cooling is not essential under normal conditions but is recommended for heavily salted fish in which the degree of red bacterial contamination is unknown or suspected to be critical, and the storage refrigeration is not adequate to cool the product in a sufficiently short time.


2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yixiang Wu ◽  
Xinhui Kang

In traditional Miryoku engineering, the construction of product Kansei factors is only based on the qualitative analysis method. The traditional Miryoku engineering cannot effectively reflect the complex and changeable Kansei factors of users. Therefore, the research path of the Kansei factors needs to be expanded. In this paper, we proposed an evaluation-fuzzy-quantification model based on users’ Kansei, and the evaluation analysis, the fuzzy computing, and the quantitative analysis were combined to quantify the importance of design considerations for the instrument interface of electric vehicles. The characteristic of the proposed method is that the qualitative analysis and quantitative analysis are combined to overcome their respective drawbacks. The results of the experiment verified that the proposed method could quantitatively analyze the design consideration factors, and the proposed approach could improve the usability and appeal of the instrument information interface.


2014 ◽  
Vol 875-877 ◽  
pp. 1712-1715
Author(s):  
H. Qiu ◽  
H. Wang

Design consideration of nanoelectromechanical switches with low actuation voltage is presented. For a fixed-fixed beam structure design, it has been found that the actuation voltage can be largely reduced by integrating corrugations onto the fixed beam. An actuation voltage less than 3 V can be achieved with a relaxed design rule.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


Sign in / Sign up

Export Citation Format

Share Document