Computer Simulation of Three-Dimensional Mechanical Assemblies: Part I — General Formulation

Author(s):  
Yong Fang ◽  
F. W. Liou

Abstract In Part I of this paper, a dynamic modeling system for the simulation of three dimensional mechanical assemblies is presented. With this simulation tool, a designer can interactively create an assembly of mechanical components ready for dynamic analysis. The modeling system presented in this paper includes the derivation of the equations of motion of spatial multi-body systems, and the formulation of the equations to model the associated collision detection and collision responses. Part II of this paper is to introduce the geometry modeling and computer simulation of 3D systems.

Author(s):  
Yong Fang ◽  
F. W. Liou

Abstract In this paper, the implementation of a modeling system for the simulation of three dimensional mechanical assemblies with elastic components is presented. A mechanical assembly is modeled as a multi-body system with changing topologies. The elastic behavior can be automatically modeled using finite element method. With this simulation tool, a designer can interactively create an assembly of mechanical components ready for dynamic and elastic analysis. This paper presents a prototype of the modeling system.


Author(s):  
T. C. Chou ◽  
F. W. Liou

Abstract Computer simulation of the kinematic and dynamic behaviors of mechanical assemblies has become a very important tool in design and manufacturing, because the designer can foresee how a product is going to perform before the product is actually fabricated. However, up to now, the most current simulation modules are based on analysis from another kinematic or dynamic module by specifying the mating conditions between components, and then displaying the motion on the screen. This computer simulation actually performs similarly to a movie, and can only provide visual checking. The drawback of this simulation approach is that designers are forced to use the available joint models, and may lose their creativity. In part I of this paper, general mathematical modeling of the multi-body system is presented, while part II of this paper, a prototype convex-feature modeling system is presented with which a designer can interactively create an assembly of mechanical components ready for dynamic analysis. It can provide a state-of-the-art technology for real simulation of any mechanical systems, and act as a cost-effective test bed for concepts, final design, and control algorithms.


1977 ◽  
Vol 99 (3) ◽  
pp. 773-779 ◽  
Author(s):  
N. Orlandea ◽  
M. A. Chace ◽  
D. A. Calahan

The work described herein is an extension of sparse matrix and stiff integrated numerical algorithms used for the simulation of electrical circuits and three-dimensional mechanical dynamic systems. By applying these algorithms big sets of sparse linear equations can be solved efficiently, and the numerical instability associated with widely split eigenvalues can be avoided. The new numerical methods affect even the initial formulation for these problems. In this paper, the equations of motion and constraints (Part 1) and the force function of springs and dampers (Part 2) are set up, and the numerical solutions for static, transient, and linearized types of analysis as well as the modal optimization algorithms are implemented in the ADAMS (automatic dynamic analysis of mechanical systems) computer program for simulation of three-dimensional mechanical systems (Part 2). The paper concludes with two examples: computer simulation of the front suspension of a 1973 Chevrolet Malibu and computer simulation of the landing gear of a Boeing 747 airplane. The efficiency of simulation and comparison with experimental results are given in tabular form.


1977 ◽  
Vol 99 (3) ◽  
pp. 780-784 ◽  
Author(s):  
N. Orlandea ◽  
D. A. Calahan ◽  
M. A. Chace

The work described herein is an extension of sparse matrix and stiff integrated numerical algorithms used for the simulation of electrical circuits and three-dimensional mechanical dynamic systems. By applying these algorithms, big sets of sparse linear equations can be solved efficiently, and the numerical instability associated with widely split eigenvalues can be avoided. The new numerical methods affect even the initial formulation for these problems. In this paper, the equations of motion and constraints (Part 1) and the force function of springs and dampers (Part 2) are set up, and the numerical solutions for static, transient, and linearized types of analysis as well as the model optimization algorithms are implemented in the ADAMS (automatic dynamic analysis of mechanical systems) computer program for simulation of three-dimensional mechanical systems (Part 2). The paper concludes with two examples: computer simulation of the front suspension of a 1973 Chevrolet Malibu and computer simulation of the landing gear of a Boeing 747 airplane. The efficiency of simulation and comparison with experimental results are given in tabular form.


1996 ◽  
Vol 118 (3) ◽  
pp. 376-381 ◽  
Author(s):  
Z. Y. Wang ◽  
K. P. Rajurkar

This paper presents a dynamic analysis of the ultrasonic machining process based on impact mechanics. Equations representing the dynamic contact force and stresses caused by the impinging of abrasive grits on the work, are obtained by solving the three-dimensional equations of motion. The factors affecting the material removal rate have been studied. It is found that the theoretical estimates obtained from the dynamic model are in good agreement with the experimental results.


1989 ◽  
Vol 111 (3) ◽  
pp. 321-327 ◽  
Author(s):  
E. Bayo ◽  
M. A. Serna

A series of penalty methods are presented for the dynamic analysis of flexible mechanisms. The proposed methods formulate the equations of motion with respect to a floating frame that follows the rigid body motion of the links. The constraint conditions are not appended to the Lagrange’s equations in the form of algebraic or differential constraints, but inserted in them by means of a penalty formulation, and therefore the number of equations of the system does not increase. Furthermore, the discretization of the equations using the finite element method leads to a system of ordinary differential equations that can be solved using standard numerical algorithms. The proposed methods are valid for three dimensional analysis and can be very easily implemented in existing codes. Furthermore, they can be used to model any type of constraint conditions, either holonomic or nonholonomic, and with any degree of redundancy. A series of mechanisms composed of elastic members are analyzed. The results demonstrate the capabilities of the proposed methods for simulation analysis.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 321 ◽  
Author(s):  
Sorin Vlase ◽  
Iuliu Negrean ◽  
Marin Marin ◽  
Maria Luminița Scutaru

When analyzing the dynamic behavior of multi-body elastic systems, a commonly used method is the finite element method conjunctively with Lagrange’s equations. The central problem when approaching such a system is determining the equations of motion for a single finite element. The paper presents an alternative method of calculation theses using the Gibbs–Appell (GA) formulation, which requires a smaller number of calculations and, as a result, is easier to apply in practice. For this purpose, the energy of the accelerations for one single finite element is calculated, which will be used then in the GA equations. This method can have advantages in applying to the study of multi-body systems with elastic elements and in the case of robots and manipulators that have in their composition some elastic elements. The number of differentiation required when using the Gibbs–Appell method is smaller than if the Lagrange method is used which leads to a smaller number of operations to obtain the equations of motion.


1986 ◽  
Vol 108 (4) ◽  
pp. 322-329 ◽  
Author(s):  
M. J. Richard ◽  
R. Anderson ◽  
G. C. Andrews

This paper describes the vector-network approach which is a comprehensive mathematical model for the systematic formulation of the nonlinear equations of motion of dynamic three-dimensional constrained multi-body systems. The entire procedure is a basic application of concepts of graph theory in which laws of vector dynamics have been combined. The main concepts of the method have been explained in previous publications but the work described herein is an appreciable extension of this relatively new approach. The method casts simultaneously the three-dimensional inertia equations associated with each rigid body and the geometrical expressions corresponding to the kinematic restrictions into a symmetrical format yielding the differential equations governing the motion of the system. The algorithm is eminently well suited for the computer-aided simulation of arbitrary interconnected rigid bodies; it serves as the basis for a “self-formulating” computer program which can simulate the response of a dynamic system, given only the system description.


Author(s):  
Tomoya Sakaguchi ◽  
Kazuyoshi Harada

We have developed a three-dimensional dynamic simulation tool for tapered roller bearings using commercially available analysis software, ADAMS (MSC. Software). Cage motion in six degrees was analyzed with the simulation tool and was measured by experiments. The results showed the validity of the simulation tool. Regarding the cage behavior, as the traction forces between rollers and races grew, the amplitude of the cage whirl motion increased up to the radial guide clearance between the roller and its cage pocket.


2019 ◽  
Vol 7 (9) ◽  
pp. 298 ◽  
Author(s):  
Ćatipović ◽  
Ćorak ◽  
Alujević ◽  
Parunov

In this paper, a model for dynamic analysis of array of floating breakwaters is developed and tested. Special attention is given to modeling connections between neighboring elements of the array. A linear three-dimensional floating multi-body formulation is used as a foundation for the presented model. An additional stiffness matrix is derived which introduces the influence of the connections onto motion of the array. The stiffness matrix is used to couple motions in vertical and horizontal planes i.e. the connections are modeled in three-dimensions. The equation of motion is solved in the frequency domain. The newly developed model is tested on an array of three connected breakwaters. The motion and the performance of the breakwater array are investigated under different significant heights and directions of the incoming waves.


Sign in / Sign up

Export Citation Format

Share Document