scholarly journals Effectiveness of Haptic Sensation for the Evaluation of Virtual Prototypes

Author(s):  
Sergei A. Volkov ◽  
Judy M. Vance

Abstract Virtual Reality techniques provide a unique new way to interact with three-dimensional digital objects. Virtual prototyping refers to the use of virtual reality to obtain evaluations of designs while they are still in digital form before physical prototypes are built. While the current state-of-the-art in virtual reality relies mainly on the use of stereo viewing and auditory feedback, commercial haptic devices have recently become available that can be integrated into the virtual environment to provide force feedback to the user. This paper outlines a study that was performed to determine whether the addition of force feedback to the virtual prototyping task improved the ability of the participants to make design decisions. The specific task involved comparing the location and movement of two virtual parking brakes located in the virtual cockpit of an automobile. The paper describes the purpose, methods and results of the study.

2001 ◽  
Vol 1 (2) ◽  
pp. 123-128 ◽  
Author(s):  
Sergei Volkov ◽  
Judy M. Vance

Virtual reality techniques provide a unique new way to interact with three-dimensional digital objects. Virtual prototyping refers to the use of virtual reality to obtain evaluations of designs while they are still in digital form before physical prototypes are built. While the state-of-the-art in virtual reality relies mainly on the use of stereo viewing and auditory feedback, commercial haptic devices have recently become available that can be integrated into the virtual environment to provide force feedback to the user. This paper outlines a study that was performed to determine whether the addition of force feedback to the virtual prototyping task improved the ability of the participants to make design decisions. Seventy-six people participated in the study. The specific task involved comparing the location and movement of two virtual parking brakes located in the virtual cockpit of an automobile. The results indicate that the addition of force feedback to the virtual environment did not increase the accuracy of the participants’ answers, but it did allow them to complete the task in a shorter time. This paper describes the purpose, methods, and results of the study.


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 77
Author(s):  
Sanika Doolani ◽  
Callen Wessels ◽  
Varun Kanal ◽  
Christos Sevastopoulos ◽  
Ashish Jaiswal ◽  
...  

Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR.


Informatics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 37
Author(s):  
Loraine Franke ◽  
Daniel Haehn

Modern scientific visualization is web-based and uses emerging technology such as WebGL (Web Graphics Library) and WebGPU for three-dimensional computer graphics and WebXR for augmented and virtual reality devices. These technologies, paired with the accessibility of websites, potentially offer a user experience beyond traditional standalone visualization systems. We review the state-of-the-art of web-based scientific visualization and present an overview of existing methods categorized by application domain. As part of this analysis, we introduce the Scientific Visualization Future Readiness Score (SciVis FRS) to rank visualizations for a technology-driven disruptive tomorrow. We then summarize challenges, current state of the publication trend, future directions, and opportunities for this exciting research field.


Author(s):  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Eder Govea ◽  
Raquel Espinosa-Castañeda ◽  
Enrique Gallegos

The technological growth in the last years have conducted to the development of virtual reality (VR) systems able to immerse the user into a three-dimensional (3D) virtual environment where the user can interact in real time with virtual objects. This interaction is mainly based on visualizing the virtual environment and objects. However, with the recent beginning of haptic systems, the interaction with the virtual world has been extended to also feel, touch and manipulate virtual objects. Virtual reality has been successfully used in the development of applications in different scientific areas ranging from basic sciences, social science, education and entertainment. On the other hand, the use of haptics has increased in the last decade in domains from sciences and engineering to art and entertainment. Despite many developments, there is still relatively little knowledge about the confluence of software, enabling hardware, visual and haptic representations, to enable the conditions that best provide for an immersive sensory environment to convey information about a particular subject domain. In this paper, the state of the art of the research work regarding virtual reality and haptic technologies carried out by the authors in the last years is presented. The aim is to evidence the potential use of these technologies to develop usable systems for analysis and simulation in different areas of knowledge. The development of three different systems in the areas of engineering, medicine and art is presented. In the area of engineering, a system for the planning, evaluation and training of assembly and manufacturing tasks has been developed. The system, named as HAMS (Haptic Assembly and Manufacturing System), is able to simulate assembly tasks of complex components with force feedback provided by the haptic device. On the other hand, in the area of medicine, a surgical simulator for planning and training orthognathic surgeries has been developed. The system, named as VOSS (Virtual Osteotomy Simulator System), allows the realization of virtual osteotomies with force feedback. Finally, in the area of art, an interactive cinema system for blind people has been developed. The system is able to play a 3D virtual movie for the blind user to listen to and touch by means of the haptic device. The development of these applications and the results obtained from these developments are presented and discussed in this paper.


2006 ◽  
Vol 5-6 ◽  
pp. 55-62
Author(s):  
I.A. Jones ◽  
A.A. Becker ◽  
A.T. Glover ◽  
P. Wang ◽  
S.D. Benford ◽  
...  

Boundary element (BE) analysis is well known as a tool for assessing the stiffness and strength of engineering components, but, along with finite element (FE) techniques, it is also finding new applications as a means of simulating the behaviour of deformable objects within virtual reality simulations since it exploits precisely the same kind of surface-only definition used for visual rendering of three-dimensional solid objects. This paper briefly reviews existing applications of BE and FE within virtual reality, and describes recent work on the BE-based simulation of aspects of surgical operations on the brain, making use of commercial hand-held force-feedback interfaces (haptic devices) to measure the positions of the virtual surgical tools and provide tactile feedback to the user. The paper presents an overview of the project then concentrates on recent developments, including the incorporation of simulated tumours in the virtual brain.


2016 ◽  
Vol 50 (29) ◽  
pp. 4103-4121 ◽  
Author(s):  
Lindsey Waterton Taylor ◽  
Xiaogang Chen

Current state of the art within textile truss structures requires a variety of production, assembly and joining processes to conclude in a fully integrated truss configuration. This approach sees the joining and bonding of separate struts to node parts. The node is the connecting area which accommodates the strut-to-strut intersections. A production process of separate truss components (struts and nodes) inherently has constraints, such as increased labour, bonding issues and longevity of product. In the development of a fully integrated textile truss, the utilisation of conventional weaving technology and production principles allowed the development of the three-dimensional woven nodal truss structure. The three-dimensional woven nodal truss structure’s node and nodal segmentation, defined by boundary lines provided defined areas within the weaving width, length and depth for the assignment of weave architectures. The commonalities within the production of varying strut-to-strut intersections and strut-to-strut variable dimensions within a T-shaped and K-shaped nodal configuration provide the foundations for the development of elementary nodes for other three-dimensional woven nodal truss structures. The development of the generic procedure and application of the three-dimensional-to-two-dimensional-to-three-dimensional nodal structure production process and elementary nodes will be presented within this article.


Author(s):  
DEVENDRA NAGAL ◽  
S. S. MEHTA ◽  
SWATI SHARMA

Virtual reality (VR) encompasses a number of surgical research topics, including computer graphics, imaging, visualization, simulation, data fusion and telemedicine. In this paper we define virtual reality and each of these areas, focusing on a state-of-the-art review of the research and recent accomplishments. .Virtual reality is a powerful technology for solving today’s real-world problems. Virtual reality refers to computer-generated, interactive, three-dimensional (3-D) environments into which patients are immersed. It provides a way for surgeon to visualize, manipulate and interact with simulated environments through the use of computers and extremely complex data.


2017 ◽  
Author(s):  
Shaun W Jerdan ◽  
Mark Grindle ◽  
Hugo C van Woerden ◽  
Maged N Kamel Boulos

BACKGROUND eHealth interventions are becoming increasingly used in public health, with virtual reality (VR) being one of the most exciting recent developments. VR consists of a three-dimensional, computer-generated environment viewed through a head-mounted display. This medium has provided new possibilities to adapt problematic behaviors that affect mental health. VR is no longer unaffordable for individuals, and with mobile phone technology being able to track movements and project images through mobile head-mounted devices, VR is now a mobile tool that can be used at work, home, or on the move. OBJECTIVE In line with recent advances in technology, in this review, we aimed to critically assess the current state of research surrounding mental health. METHODS We compiled a table of 82 studies that made use of head-mounted devices in their interventions. RESULTS Our review demonstrated that VR is effective in provoking realistic reactions to feared stimuli, particularly for anxiety; moreover, it proved that the immersive nature of VR is an ideal fit for the management of pain. However, the lack of studies surrounding depression and stress highlight the literature gaps that still exist. CONCLUSIONS Virtual environments that promote positive stimuli combined with health knowledge could prove to be a valuable tool for public health and mental health. The current state of research highlights the importance of the nature and content of VR interventions for improved mental health. While future research should look to incorporate more mobile forms of VR, a more rigorous reporting of VR and computer hardware and software may help us understand the relationship (if any) between increased specifications and the efficacy of treatment.


Author(s):  
Nicoletta Sala

Virtual Reality (VR) is a technology which has various application fields (from video games to psychiatry). It is indispensable in critical simulation, for instance in military training, in surgical operation simulation, in creation of environments which could set off phobias (in psychiatry), or in realization of virtual prototypes, for instance in industrial design. The aim of this chapter is to present how the VR also finds excellent application fields in architecture and in engineering. For instance, in the teaching of the basic concepts, in techniques of graphic rebuilding for the building restoration, in realization of virtual visits inside buildings, and in urban generative processes simulated by computer. Another use of the virtual reality is in the introduction of a new kind of architecture: Virtual Architecture, strongly connected to the Information and Communication Technology (ITC), to the Internet, and in the virtual prototyping in engineering.


2019 ◽  
Vol 18 (1) ◽  
pp. E11-E11 ◽  
Author(s):  
Jeremy Steinberger ◽  
Dominic Nistal ◽  
Leslie Schlachter ◽  
Anthony Costa ◽  
Holly Oemke ◽  
...  

Abstract The application of navigation integrated virtual reality (VR) in neurosurgery is an emerging paradigm that may offer improved situational awareness for the surgeon. Here, we present a case of a complex arteriovenous malformation (AVM) with complex venous drainage and observe how VR impacted structural delineation during approach, resection, and overall strategic planning. The patient was a 30-yr-old female with no past medical history who presented with headaches and a generalized tonic clonic seizure. Workup included computed tomography, computed tomography angiography, magnetic resonance imaging, magnetic resonance angiography, and magnetic resonance venography; a high flow right frontal AVM was found. The AVM was safely resected using navigation integrated with VR; careful arterial devascularization preceded resection of the draining veins and then the AVM nidus. Postoperative scans confirmed complete resection of the AVM. This case outlines the application of a current state-of-the-art VR platform to assist the craniotomy for resection of an AVM.


Sign in / Sign up

Export Citation Format

Share Document