Interactive Multi-Modal Visualization Environment for Complex System Decision Making

Author(s):  
Jung Leng Foo ◽  
Eliot Winer

Decision making in a complex system requires a large amount of data, and real time interaction and visualization tools become effective solutions. Constant improvement in computer graphics technology has encouraged the research of developing better and more efficient ways of interacting and visualizing complex three-dimensional image data. This paper presents a unique software framework for interacting and visualizing complex volume image data in a virtual environment. For efficient user interactions, a wireless gamepad controller is used as the main input device. The buttons and joysticks on the gamepad controller are intuitively mapped to perform different functions depending on the feature mode that the software is currently in. Apart from the general viewer, an extension of the software also reads in standard format patient medical images such as CT/MRI scans. As an effective decision making tool, the software allows the user to apply fast pseudo-coloring and multiple interactive oblique clipping planes for an immersive detailed examination of any 3D model. In the medical imaging extension of this software, it features the ability for the user to select a specific range of tissue densities to render and an endosurgery planning mode that allows a surgeon to place simulated laparoscopic surgical instruments in a virtual model of the patient. The developed software allows for better interaction with complex volume data for use as a decision making and evaluation tool.

Author(s):  
Navaneetha Krishnan Rajan ◽  
Zeying Song ◽  
Kenneth R. Hoffmann ◽  
Marek Belohlavek ◽  
Eileen M. McMahon ◽  
...  

The left ventricle (LV) of a human heart receives oxygenated blood from the lungs and pumps it throughout the body via the aortic valve. Characterizing the LV geometry, its motion, and the ventricular flow is critical in assessing the heart’s health. An automated method has been developed in this work to generate a three-dimensional (3D) model of the LV from multiple-axis echocardiography (echo). Image data from three long-axis sections and a basal section is processed to compute spatial nodes on the LV surface. The generated surfaces are output in a standard format such that it can be imported into the curvilinear-immersed boundary (CURVIB) framework for numerical simulation of the flow inside the LV. The 3D LV model can be used for better understanding of the ventricular motion and the simulation framework provides a powerful tool for studying left ventricular flows on a patient specific basis. Future work would incorporate data from additional cross-sectional images.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


2021 ◽  
pp. 1-38
Author(s):  
Yingya Jia ◽  
Anne S. Tsui ◽  
Xiaoyu Yu

ABSTRACT Optimal or rational decision making is not possible due to informational constraints and limits in computation capability of humans (March & Simon, 1958; March, 1978). This bounded rationality serves as a filtering process in decision making among business executives (Hambrick & Mason, 1984). In this study, we propose the concept of CEO reflective capacity as a behavior-oriented cognitive capability that may overcome to some extent the pervasive limitation of bounded rationality in executive decision-making. Following Hinkin's (1998) method and two executive samples, we developed and validated a three-dimensional measure of CEO reflective capacity. Based on two-wave surveys of CEOs and their executive-subordinates in 213 Chinese small-medium sized firms, we tested and confirmed three hypotheses on how CEO reflective capacity is related to a firm's sustainability performance (including economic, societal, and environmental dimensions) through the mediating mechanisms of strategic decision comprehensiveness and CEO behavioral complexity. We discuss the contribution of this study to the literature on the upper echelons and information processing perspectives. We also identify the implications for future research on strategic leadership and managerial cognition in complex and dynamic contexts.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


2021 ◽  
Vol 11 (13) ◽  
pp. 5931
Author(s):  
Ji’an You ◽  
Zhaozheng Hu ◽  
Chao Peng ◽  
Zhiqiang Wang

Large amounts of high-quality image data are the basis and premise of the high accuracy detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect various high-quality ship image data based on the marine environment. A novel method based on CNN is proposed to generate a large number of high-quality ship images to address this. We obtained ship images with different perspectives and different sizes by adjusting the ships’ postures and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into 2D ship image according to the principle of pinhole imaging. We selected specific experimental scenes as background images, and the target ships of the 2D ship images were superimposed onto the background images to generate “Simulation–Real” ship images (named SRS images hereafter). Additionally, an image annotation method based on SRS images was designed. Finally, the target detection algorithm based on CNN was used to train and test the generated SRS images. The proposed method is suitable for generating a large number of high-quality ship image samples and annotation data of corresponding ship images quickly to significantly improve the accuracy of ship detection. The annotation method proposed is superior to the annotation methods that label images with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.


2021 ◽  
Vol 45 (5) ◽  
Author(s):  
Yuri Nagayo ◽  
Toki Saito ◽  
Hiroshi Oyama

AbstractThe surgical education environment has been changing significantly due to restricted work hours, limited resources, and increasing public concern for safety and quality, leading to the evolution of simulation-based training in surgery. Of the various simulators, low-fidelity simulators are widely used to practice surgical skills such as sutures because they are portable, inexpensive, and easy to use without requiring complicated settings. However, since low-fidelity simulators do not offer any teaching information, trainees do self-practice with them, referring to textbooks or videos, which are insufficient to learn open surgical procedures. This study aimed to develop a new suture training system for open surgery that provides trainees with the three-dimensional information of exemplary procedures performed by experts and allows them to observe and imitate the procedures during self-practice. The proposed system consists of a motion capture system of surgical instruments and a three-dimensional replication system of captured procedures on the surgical field. Motion capture of surgical instruments was achieved inexpensively by using cylindrical augmented reality (AR) markers, and replication of captured procedures was realized by visualizing them three-dimensionally at the same position and orientation as captured, using an AR device. For subcuticular interrupted suture, it was confirmed that the proposed system enabled users to observe experts’ procedures from any angle and imitate them by manipulating the actual surgical instruments during self-practice. We expect that this training system will contribute to developing a novel surgical training method that enables trainees to learn surgical skills by themselves in the absence of experts.


2011 ◽  
Vol 403-408 ◽  
pp. 5182-5186
Author(s):  
Sheng Yi Yang ◽  
An Gu ◽  
Meng Li ◽  
Chang Jian Lu

In robotic-assisted heart surgery, the method of canceling the relative motion between the surgical site on the heart and the surgical instruments was introduced in this paper. A whisker sensor was designed for three dimensional position measurement in beating heart surgery. Analytical models were developed according to the classical mechanics of materials, and theoretical formulas were derived for displacement measurement. Feasibility and effectiveness of the method were verified by simulation experiments. We can obtain measurements by loading displacement to the whisker sensor, and draw conclusions by comparing the measurements.


Sign in / Sign up

Export Citation Format

Share Document