An Expressive Socially Assistive Robot for Health-Care Applications

Author(s):  
Brian Allison ◽  
Goldie Nejat

It is anticipated that the use of assistive robots will be one of the most important service applications of robotic systems of the future. In this paper, a unique non-contact socially assistive robot consisting of a human-like demeanor is presented for utilization in hospital wards and veteran homes to study its role and impact on the well-being of patients, addressing patient’s needs and its overall effect on the quality of patient care. The robot will be an embodied entity that will participate in hands-off non-contact social interaction with a patient during the convalescence, rehabilitation or end-of-life care stage. The robot has been designed as a platform to incorporate the three design parameters of embodiment, emotion and non-verbal communication to encourage natural interactions between a person and itself. In this paper, we present the mechanical design of the robot. The robot is able to communicate via: (i) a unique human-like face with artificial skin that utilizes the modeling of muscles of a human face to express facial expressions, (ii) a 3 degrees-of-freedom (DOF) neck capable of expressing head gestures, and (iii) an upper torso consisting of a 2 DOF waist and two 4 DOF arms designed to mimic human-like body language.

2008 ◽  
Vol 1 (1) ◽  
Author(s):  
Brian Allison ◽  
Goldie Nejat ◽  
Emmeline Kao

It is anticipated that the use of assistive robots will be one of the most important service applications of robotic systems of the future. In this paper, the development of a unique noncontact socially assistive robot consisting of a humanlike demeanor is presented for utilization in hospital wards and nursing∕veteran homes to study its role and impact on the well-being of patients, addressing patient’s needs and its overall effect on the quality of patient care. The robot will be an embodied entity that will participate in hands-off noncontact social interaction with a patient during the convalescence, rehabilitation, or end-of-life care stage. The robot has been designed as a platform to incorporate the three design parameters of embodiment, emotion, and nonverbal communication to encourage natural human-robot interactions. Herein, we present the overall mechanical design of the socially assistive robot focusing mainly on the development of the actuation system of the face, head, and upper body. In particular, we propose the development of a unique muscle actuation mechanism for the robotic face to allow for the display of rich facial expressions during social assistive interaction scenarios. The novelty of the actuation system is in its use of the dependency of facial muscle activity to minimize the number of individual actuators required to control the robotic face.


Author(s):  
Goldie Nejat ◽  
Brian Allison ◽  
Nadia Gomez ◽  
Andrew Rosenfeld

It is anticipated that the use of assistive robots will be one of the most important service applications of robotic systems of the future. In this paper, a unique non-contact socially assistive robot consisting of a human-like demeanor is presented for utilization in hospital wards and veteran homes to study its role and impact on the well-being of patients, addressing patient’s needs and its overall effect on the quality of patient care. The robot will be an embodied entity that will participate in hands-off non-contact social interaction with a patient during the convalescence, rehabilitation or end-of-life care stage. The robot has been designed as a platform to incorporate the three design parameters of embodiment, emotion and non-verbal dialog to encourage natural interactions between the patient and itself. For perception, we describe the first application of utilizing varying intensity depth imaginary, via a 3D camera, for non-contact and non-restricting 3D gesture recognition and characterization.


2017 ◽  
Vol 41 (S1) ◽  
pp. S104-S104
Author(s):  
S. Loi ◽  
R. Khosla ◽  
K. Nguyen ◽  
N. Lautenschlager ◽  
D. Velakoulis

ObjectivesSocially-assistive robots have been used with older adults with cognitive impairment in residential care, and found to improve mood and well-being. However, there is little known about the potential benefits in adults with other neuropsychiatric symptoms.AimsThe aim of this project was explore the utility and acceptability of a socially-assistive robot in engaging adults with a variety of neuropsychiatric symptoms.MethodsBetty, a socially-assistive robot was installed in a unit which specialises in the assessment and diagnosis of adults presenting with neuropsychiatric symptoms. She is 39 cm tall, has a baby-face appearance and has the ability to engage individuals through personalised services which can be programmed according to individuals’ preferences. These include singing songs and playing games. Training for the nursing staff who were responsible for incorporating Betty into the unit activities was provided. The frequency, duration and type of activity which Betty was involved in was recorded. Patients admitted who could provide informed consent were able to be included in the project. These participants completed pre- and post-questionnaires.ResultsEight patients (mean age 54.4 years, SD 13.6) who had diagnoses ranging from depression and schizophrenia participated. Types of activities included singing songs, playing Bingo and reading the news. Participants reported that they were comfortable with Betty and did not feel concerned in her presence. They enjoyed interacting with her.ConclusionsThis pilot project demonstrated that participants found Betty to be acceptable and she was useful in engaging them in activities. Future directions would involve larger sample sizes and different settings.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Author(s):  
Goldie Nejat ◽  
Maurizio Ficocelli

The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of conundrums that must be addressed in designing such a robot. This work addresses one of the main limitations in the development of intelligent task-driven socially assistive robots: Robotic control architecture design and implementation with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for human-robot interactions (HRI). The module is utilized to determine the appropriate emotions of the robot, as motivated by the well-being of the person, during assistive task-driven interactions. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Preliminary experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI in assistive scenarios.


Author(s):  
Leo Woiceshyn ◽  
Yuchi Wang ◽  
Goldie Nejat ◽  
Beno Benhabib

Getting dressed is a universally performed daily activity, and has a substantial impact on a person’s well-being. Choosing appropriate outfits to wear is important, as clothes protect a person from elements in the environment, and act as a barrier against harsh surfaces [1]. Studies have shown strong correlation between clothing choices and perceptions of sociability, emotional stability, and impression formation (e.g., [2]). This activity, however, can be difficult for some individuals, as they may lack the required reasoning and judgement required [3]. They include children with intellectual and learning disabilities [4] (e.g., Down syndrome [5], dyspraxia [6], autism spectrum disorder [7]), and older adults suffering from dementia including Alzheimer’s disease [8,9], or HIV-associated neurocognitive disorders [10]. In this paper, we present the development of a novel autonomous robotic clothing recommendation system to provide appropriate clothing options, which are personalized to a user’s wardrobe. This research expands on our previous work on socially assistive robots providing assistance with other daily activities, including meal eating [11] and playing Bingo games [12]. Currently, a few smartphone applications exist for providing outfit choices (e.g., [13,14]); however, unlike our proposed system, they are fashion-focused and not able to adapt online to a user’s preferences. Furthermore, by utilizing a socially assistive robot, we provide a more engaging interaction. We utilize the small Nao social robot, Leia, to guide and interact with a user in order to obtain information regarding his/her preferences, the activity for which the clothing will be worn, as well as the environment in which the activity will take place in order to make outfit recommendations, Fig. 1.


2008 ◽  
Vol 20 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Yuji Asai ◽  
◽  
Yasuhiro Chiba ◽  
Keisuke Sakaguchi ◽  
Naoki Bushida ◽  
...  

We propose a simple hopping mechanism using vibration of a two-degrees-of-freedom (2-DOF) system for a fast stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in springs and travels quickly using wheels mounted on its lower body. The trajectories of bodies during hopping change based on mechanical design parameters such as reduced mass of the two bodies, the mass ratio between the upper and lower bodies, and spring constant, and control parameters such as initial contraction of the spring and wire tension. This property allows the robot to quickly and economically climb stairs and land softly without complex control. In this paper, we propose a mathematical model of the robot and investigate required tread length for continuous hopping to climb a flight of stairs. Furthermore, we demonstrate fast stair-climbing and soft landing for a flight of stairs in experiments.


2011 ◽  
Vol 08 (01) ◽  
pp. 103-126 ◽  
Author(s):  
JEANIE CHAN ◽  
GOLDIE NEJAT ◽  
JINGCONG CHEN

Recently, there has been a growing body of research that supports the effectiveness of using non-pharmacological cognitive and social training interventions to reduce the decline of or improve brain functioning in individuals suffering from cognitive impairments. However, implementing and sustaining such interventions on a long-term basis is difficult as they require considerable resources and people, and can be very time-consuming for healthcare staff. Our research focuses on making these interventions more accessible to healthcare professionals through the aid of robotic assistants. The objective of our work is to develop an intelligent socially assistive robot with abilities to recognize and identify human affective intent to determine its own appropriate emotion-based behavior while engaging in assistive interactions with people. In this paper, we present the design of a novel human-robot interaction (HRI) control architecture that allows the robot to provide social and cognitive stimulation in person-centered cognitive interventions. Namely, the novel control architecture is designed to allow a robot to act as a social motivator by encouraging, congratulating and assisting a person during the course of a cognitively stimulating activity. Preliminary experiments validate the effectiveness of the control architecture in providing assistive interactions during a HRI-based person-directed activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Cecilia Clark ◽  
Levin Sliker ◽  
Jim Sandstrum ◽  
Brian Burne ◽  
Victoria Haggett ◽  
...  

Through play, typically developing children manipulate objects and interact with peers to establish and develop physical, cognitive, language, and social skills. However, children with complex disabilities and/or developmental delays have limited play experiences, thus compromising the quality of play and acquisition of skills. Assistive technologies have been developed to increase opportunities and level of interaction for children with disabilities to facilitate learning and development. One type of technology, Socially Assistive Robotics, is designed to assist the human user through social interaction while creating measurable growth in learning and rehabilitation. The investigators in this study designed, developed, and validated a semiautonomous Socially Assistive Robot to compare with a switch-adapted toy to determine robot effectiveness in quantity of, changes in, and differences in engagement. After interacting with both systems for three sessions each, five of the eight subjects showed a greater level of positive engagement with the robot than the switch-adapted toy, while the remaining three subjects showed slightly higher positive engagement with the toy. The preliminary results of the study suggest that Socially Assistive Robots specifically designed for children with complex cerebral palsy should be further researched and utilized to enrich play interactions and skill development for this population.


BMJ Open ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. e018815 ◽  
Author(s):  
Jordan Abdi ◽  
Ahmed Al-Hindawi ◽  
Tiffany Ng ◽  
Marcela P Vizcaychipi

ObjectiveWith an elderly population that is set to more than double by 2050 worldwide, there will be an increased demand for elderly care. This poses several impediments in the delivery of high-quality health and social care. Socially assistive robot (SAR) technology could assume new roles in health and social care to meet this higher demand. This review qualitatively examines the literature on the use of SAR in elderly care and aims to establish the roles this technology may play in the future.DesignScoping review.Data sourcesSearch of CINAHL, Cochrane Library, Embase, MEDLINE, PsychINFO and Scopus databases was conducted, complemented with a free search using Google Scholar and reference harvesting. All publications went through a selection process, which involved sequentially reviewing the title, abstract and full text of the publication. No limitations regarding date of publication were imposed, and only English publications were taken into account. The main search was conducted in March 2016, and the latest search was conducted in September 2017.Eligibility criteriaThe inclusion criteria consist of elderly participants, any elderly healthcare facility, humanoid and pet robots and all social interaction types with the robot. Exclusions were acceptability studies, technical reports of robots and publications surrounding physically or surgically assistive robots.ResultsIn total, 61 final publications were included in the review, describing 33 studies and including 1574 participants and 11 robots. 28 of the 33 papers report positive findings. Five roles of SAR were identified: affective therapy, cognitive training, social facilitator, companionship and physiological therapy.ConclusionsAlthough many positive outcomes were reported, a large proportion of the studies have methodological issues, which limit the utility of the results. Nonetheless, the reported value of SAR in elderly care does warrant further investigation. Future studies should endeavour to validate the roles demonstrated in this review.Systematic review registrationNIHR 58672.


Author(s):  
Junichi Terao ◽  
Lina Trejos ◽  
Zhe Zhang ◽  
Goldie Nejat

The development of socially assistive robots for health care applications can provide measurable improvements in patient safety, quality of care, and operational efficiencies by playing an increasingly important role in patient care in the fast pace of crowded clinics, hospitals and nursing/veterans homes. However, there are a number of research issues that need to be addressed in order to design such robots. In this paper, we address two main limitations to the development of intelligent socially assistive robots: (i) identification of human body language via a non-contact sensory system and categorization of these gestures for determining the accessibility level of a person during human-robot interaction, and (ii) decision making control architecture design for determining the learning-based task-driven behavior of the robot during assistive interaction. Preliminary experiments presented show the potential of the integration of the aforementioned techniques into the overall design of such robots intended for assistive scenarios.


Sign in / Sign up

Export Citation Format

Share Document