Modeling and Control of Underwater Pan/Tilt Camera Tracking System

Author(s):  
Yingfeng Ji ◽  
Ryoichi S. Amano ◽  
Ronald A. Perez

Biologists study on the biological behavior of various marine creatures in situ using underwater observation systems. However, darkness in an underwater environment is always one of the most difficult problems to overcome in order to clearly monitor the life of underwater creatures. In this research, a light-following scheme is proposed with the lighting device installed on a separate Pan/Tilt platform as a slave while the main Pan/Tilt camera platform works as a master. A dynamic model of Pan/Tilt platform was developed using the Lagrange’s equation. In order to achieve high speed manipulation of the Pan/Tilt platforms in underwater environment, hydrodynamic forces have to be considered. Scientists had done a great deal of researches on the hydrodynamic forces of underwater motion bodies. Most of the researches employed the semi-empirical equation based on the experimental study. The coefficients (Cd Cm) of drag and added-mass which were solved by experimental study were the research point of hydrodynamic modeling in previous researches. However, these modeling methods can be employed for the underwater bodies with the simple geometry dimension. Two hydrodynamic torque models which represent the degree of freedoms (DOFs) of panning and tilting respectively had been developed employing CFD software. The selection of turbulence models, i.e., K-E, K-W, SST, RSM and LES, was firstly accomplished using the case of turbulence flow over flat plane. The hydrodynamic torque models are obtained with the simulations results for a certain range of position and velocity values for each of DOFs. The maximum velocity for simulation was set at 60 rpm for each axis. The geometry model which represents the space relationship between the master (camera) and slave (light) and the control algorithms would be elaborated in a separate paper.

Author(s):  
Yingfeng Ji ◽  
Ronald A. Perez ◽  
Ryoichi S. Amano

Biologists study on the biological behavior of various marine creatures in situ using underwater observation systems. The darkness in an underwater environment is always one of the most difficult problems to overcome in order to clearly monitor the life cycle of underwater creatures. This illumination would be solved employing the Master-Slave (camera-light platform) coordination tracking structure. The control of underwater platform is a challenging issue due to the complex external forces in the underwater environment. Comparing of tracking control between linear proportional-derivative (PD) and nonlinear PD for the Pan/Tilt camera platform were conducted. The variable structure control (VSC), i.e., sliding mode control (SMC), was employed to the tracking control of the underwater Pan/Tilt camera platform. The disadvantage of SMC is that the discontinuous control signal would excite the high frequency unmodeled dynamic which produces the chattering. One of the methods which eliminate the chattering is to use the boundary layer (BL). However, the width of BL can introduce a trade off between the tracking performance and chattering elimination. Large width of BL can much more eliminate the chattering, but lead to less accurate control results versa. A simple, easily implemented method to vary the width of BL according to the value of tracking error is illustrated and verified in this paper.


2017 ◽  
Vol 58 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Javier Miñano-Espin ◽  
Luis Casáis ◽  
Carlos Lago-Peñas ◽  
Miguel Ángel Gómez-Ruano

AbstractReal Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent) were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD) = 536, External Defenders (ED) = 491, Central Midfielders (CM) = 544, External Midfielders (EM) = 233, and Forwards (F) = 278). Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France). A repeated measures analysis of variance (ANOVA) was performed for distances covered at different intensities (sprinting (>24.0 km/h) and high-speed running (21.1-24.0 km/h) and the number of sprints (21.1-24.0 km/h and >24.0 km/h) during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p < 0.01). While ED did not show differences in their physical performance, CD (p < 0.05), CM (p < 0.01), EM (p < 0.01) and F (p > 0.01) from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.


2019 ◽  
Vol 31 (1) ◽  
pp. 1-4
Author(s):  
A Kubayi

Background: Despite a substantial body of literature on match-running distances covered by soccer players in domestic leagues, there appears to be limited information on the Union of European Football Associations (UEFA) Euro competitions.  Objective: The aim of this study was to analyse the match-running distances covered by soccer players during the UEFA Euro 2016.  Methods: A multiple-camera tracking system (InStat Ltd) was used to analyse 228 observations of soccer players who played 15 full matches during the tournament. The outfield players were categorised according to the following playing positions: central defenders (CDs), n=58; wide defenders (WDs), n=45; central midfielders (CMs), n=53, wide midfielders (WMs), n=38; and attackers (ATs), n=34. Data were reported as means with 95% confidence intervals (CI). A one-way analysis of variance (ANOVA) was undertaken to examine the significant differences among players based on playing positions.  Results: The results indicated that the overall total distance covered by players was 10 350 m, ranging from 8 446 m to 12 982 m. ATs covered the longest distance in high-speed running (872 m; 95% CI = 813–931), while CDs covered the shortest distance (542 m; 95% CI = 503–581). A statistically significant difference was observed in high-speed running among players (F (4 223) = 36.92, P=0.001).  Conclusion: The findings of this study provide soccer scientists and coaches with important information to design and implement training sessions in order to elucidate the physical demands of players in view of successful team performance. 


Author(s):  
A.V. Bobkov ◽  
G.V. Tedeev

The article proposes a multi-camera tracking system for an object, implemented using computer vision technologies and allowing the video surveillance operator in real time to select an object that will be monitored by the system in future. It will be ready to give out the location of the object at any time. The solution to this problem is divided into three main stages: the detection stage, the tracking stage and the stage of interaction of several cameras. Methods of detection, tracking of objects and the interaction of several cameras have been investigated. To solve the problem of detection, the method of optical flow and the method of removing the background were investigated, to solve the problem of tracking — the method of matching key points and the correlation method, to solve the problem of interaction between several surveillance cameras — the method of the topological graph of a network of cameras. An approach is proposed for constructing a system that uses a combination of the background removal method, the correlation method and the method of the topological graph of a network of cameras. The stages of detection and tracking have been experimentally implemented, that is, the task of tracking an object within the coverage area of one video camera has been solved. The implemented system showed good results: a sufficiently high speed and accuracy with rare losses of the tracked object and with a slight decrease in the frame rate.


10.17159/4842 ◽  
2018 ◽  
Vol 30 (1) ◽  
pp. 1-3
Author(s):  
A Kubayi

Background: Despite the importance of extra-time in determining success in the knockout stages of soccer tournaments, there remains scant information on the physical demands of extra time on elite players. Methods: This study investigated the physical performance profiles of all soccer players (N=59) who completed four matches that went to extra time at the 2016 UEFA Euro Championship. Players were categorised as follows: central defenders (CDs), wide defenders (WDs), central midfielders (CMs), wide midfielders (WMs), and attackers (ATs). Match activities were captured using a validated camera tracking system (InStat®). Results: The findings showed that total distances covered by players during matches consistently decreased by 13% from the first half of the game (112.79±10.17 m) to extra time (103.17±6.39 m). The reduction of the total distance covered, especially in high-intensity running (i.e., high-speed running and sprinting), was more apparent in ATs than players in other positions. Conclusion: Intervention strategies needed to sustain soccer players’ physical performance during extra-time periods and of post-match recovery modalities warrant further investigation.


2018 ◽  
Vol 30 (1) ◽  
pp. 1-3 ◽  
Author(s):  
A Kubayi ◽  
A Toriola

Background: Despite the importance of extra-time in determining success in the knockout stages of soccer tournaments, there remains scant information on the physical demands of extra time on elite players. Methods: This study investigated the physical performance profiles of all soccer players (N=59) who completed four matches that went to extra time at the 2016 UEFA Euro Championship. Players were categorised as follows: central defenders (CDs), wide defenders (WDs), central midfielders (CMs), wide midfielders (WMs), and attackers (ATs). Match activities were captured using a validated camera tracking system (InStat®). Results: The findings showed that total distances covered by players during matches consistently decreased by 13% from the first half of the game (112.79±10.17 m) to extra time (103.17±6.39 m). The reduction of the total distance covered, especially in high-intensity running (i.e., high-speed running and sprinting), was more apparent in ATs than players in other positions. Conclusion: Intervention strategies needed to sustain soccer players’ physical performance during extra-time periods and of post-match recovery modalities warrant further investigation.


Author(s):  
Carlos Lago-Peñas ◽  
Anton Kalén ◽  
Miguel Lorenzo-Martinez ◽  
Roberto López-Del Campo ◽  
Ricardo Resta ◽  
...  

This study aimed to evaluate the effects playing position, match location (home or away), quality of opposition (strong or weak), effective playing time (total time minus stoppages), and score-line on physical match performance in professional soccer players using a large-scale analysis. A total of 10,739 individual match observations of outfield players competing in the Spanish La Liga during the 2018–2019 season were recorded using a computerized tracking system (TRACAB, Chyronhego, New York, USA). The players were classified into five positions (central defenders, players = 94; external defenders, players = 82; central midfielders, players = 101; external midfielders, players = 72; and forwards, players = 67) and the following match running performance categories were considered: total distance covered, low-speed running (LSR) distance (0–14 km · h−1), medium-speed running (MSR) distance (14–21 km · h−1), high-speed running (HSR) distance (>21 km · h−1), very HSR (VHSR) distance (21–24 km · h−1), sprint distance (>24 km · h−1) Overall, match running performance was highly dependent on situational variables, especially the score-line condition (winning, drawing, losing). Moreover, the score-line affected players running performance differently depending on their playing position. Losing status increased the total distance and the distance covered at MSR, HSR, VHSR and Sprint by defenders, while attacking players showed the opposite trend. These findings may help coaches and managers to better understand the effects of situational variables on physical performance in La Liga and could be used to develop a model for predicting the physical activity profile in competition.


2021 ◽  
Vol 300 ◽  
pp. 124332
Author(s):  
Gongxun Deng ◽  
Wen Ma ◽  
Yong Peng ◽  
Shiming Wang ◽  
Song Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document